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Abstract

Fine-grained zero-shot learning task requires some form of side-information to
transfer discriminative information from seen to unseen classes. As manually
annotated visual attributes are extremely costly and often impractical to obtain for
a large number of classes, in this study we use DNA as side information for the
first time for fine-grained zero-shot classification of species. Mitochondrial DNA
plays an important role as a genetic marker in evolutionary biology and has been
used to achieve near perfect accuracy in species classification of living organisms.
We implement a simple hierarchical Bayesian model that uses DNA information
to establish the hierarchy in the image space and employs local priors to define
surrogate classes for unseen ones. On the benchmark CUB dataset we show that
DNA can be equally promising, yet in general a more accessible alternative than
word vectors as a side information. This is especially important as obtaining robust
word representations for fine-grained species names is not a practicable goal when
information about these species in free-form text is limited. On a newly compiled
fine-grained insect dataset that uses DNA information from over a thousand species
we show that the Bayesian approach outperforms state-of-the-art by a wide margin.

1 Introduction

Fine-grained species classification is essential in monitoring biodiversity. Diversity of life is the
central tenet to biology and preserving biodiversity is key to a more sustainable life. Monitoring
biodiversity requires identifying living organisms at the lowest taxonomic level possible. The
traditional approach to identification uses published morphological dichotomous keys to identify the
collected sample. This identification involves a tedious process of manually assessing the presence or
absence of a long list of morphological traits arranged at hierarchical levels. The analysis is often
performed in a laboratory setting by a well-trained human taxonomist and is difficult to do at scale.
Fortunately, advances in technology have addressed this challenge to some extent through the use of
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DNA barcodes. DNA barcoding is a technique that uses a short section of DNA from a specific gene,
such as cytochrome C oxidase I (COI), found in mitochondrial DNA, and offers specific information
about speciation in living organisms and can achieve nearly perfect classification accuracy at the
species level [24, 16].

As it is costly to obtain the label information for fine-grained classification of species, Zero-Shot
Learning (ZSL) that handles missing label information is a suitable task. In ZSL, side information
is used to associate seen and unseen classes. Popular choices for side-information are manually
annotated attributes [19, 11], word embeddings [37, 13, 25] derived from free-form text or the
WordNet hierarchy [26, 2]. It is often assumed that an exhaustive list of visual attributes characterizing
all object classes (both seen and unseen) can be determined based only on seen classes. However,
taking insects as our object classes, if no seen class species have antennae, the attribute list may
not contain antenna, which may in fact be necessary to distinguish unseen species. In the United
States alone, more than 40% of all insect species (>70,000) remain undescribed [38], which is a clear
sign of the limitations of existing identification techniques that rely on visual attributes. Similarly,
free-form text is unlikely to contain sufficiently descriptive information about fine-grained objects
to generate discriminative vector embeddings. For example, tiger beetle is a class in the ImageNet
dataset. However, the tiger beetle group itself contains thousands of known species and the Wikipedia
pages for these species either do not exist or are limited to short text that does not necessarily contain
any information about species’ morphological characteristics. WordNet hierarchy may not be useful
either as most of the species names do not exist in WordNet.

Given that DNA information can be readily available for training [31, 32], species-level DNA
information can be used as highly specific side information to replace high-level semantic information
in ZSL. For seen classes, species-level DNA information can be obtained by finding the consensus
nucleotide sequence among samples of a given species or by averaging corresponding sequence
embeddings of samples. For unseen classes, species-level DNA information can be obtained from
actual samples, if available, in the same way as seen classes, or can be simulated in a non-trivial way
to represent potentially existing species.

Our approach uses DNA as side information for the first time for zero-shot classification of species. In
fine-grained, large-scale species classification, no other side information can explain class dichotomy
better than DNA, as new species are explicitly defined based on variations in DNA. The hierarchical
Bayesian model leverages the implicit inter-species association of DNA and phenotypic traits and
ultimately allows us to establish a Bayesian hierarchy based on DNA similarity between unseen
and seen classes. We compare DNA against word representations for assessing class similarity and
show that the Bayesian model that uses DNA to identify similar classes achieves favorable results
compared to the version that uses word representations on a well-known ZSL benchmark species
dataset involving slightly less than 200 bird species. In the particular case of an insect dataset with
over 1000 species, when visual attributes or word representations may not offer feasible alternatives,
we show that our hierarchical model that relies on DNA to establish class hierarchy significantly
outperforms all other embedding-based methods and feature generating networks.

Our contributions are on three fronts. First, we introduce DNA as side information for fine-grained
ZSL tasks, implement a Convolutional Neural Net (CNN) model to learn DNA barcode embeddings,
and show that the embeddings are robust and highly specific for closed-set classification of species,
even when training and test sets of species are mutually exclusive. We use the benchmark CUB
dataset as a case study to show that DNA embeddings are competitive to word embeddings as
side information. Second, we propose a fine-grained insect dataset involving 21, 212 matching
image/DNA pairs from 578 genera and 1, 213 species as a new benchmark dataset and discuss the
limitations of current ZSL paradigms for fine-grained ZSL tasks when there is no strong association
between side information and image features. Third, we perform extensive studies to show that a
simple hierarchical Bayesian model that uses DNA as side information outperforms state of the art
ZSL techniques on the newly introduced insect dataset by a wide margin.

2 Related Work

Zero-Shot Learning. Early ZSL literature is dominated by methods that embed image features into
a semantic space and perform various forms of nearest neighbor search to do inference [13, 37, 1].
As the dimensionality of semantic space is usually much smaller than the feature space this leads
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Figure 1: Image samples from the INSECT dataset. Rows represents a small subset of species from
three orders: Hymenoptera, Coleoptera and Diptera, respectively. The first word in names indicate
genus, the two words together define the species name.

to the hubness problem. In an effort to alleviate the hubness problem, [46, 36] change the direction
of the embedding from semantic space to image feature space. This was followed by a line of work
that investigates bidirectional embedding between semantic and image spaces through a latent space
[47, 39, 2, 28, 34].

In [23, 14], a new strategy of synthesizing features for unseen classes and converting the challenging
ZSL problem into traditional supervised learning is introduced [21, 40, 9, 12, 44, 48, 27, 35, 4].
Although feature generating networks (FGNs) currently achieve state-of-the-art results in ZSL,
they suffer from the same problem as earlier lines of work in ZSL: hypersensitivity towards side
information not strongly correlated with visual attributes. The vulnerability of both embedding and
FGN-based methods toward sources of side information different than visual attributes, such as
word vectors or WordNet hierarchy, is investigated in [2, 35, 40]. Another limitation of FGNs is
that features generated for unseen classes are significantly less dispersed than actual features due to
the generator failing to span more than a small subset of modes available in the data. Recent deep
generative models mitigate this problem by proposing different loss functions that can better explore
inter-sample and inter-class relationships [3, 7, 8, 17, 41]. However, these methods fail to scale well
with an increasing number of classes with an especially high inter-class similarity [22].

Side Information in ZSL. Side information serves as the backbone of ZSL as it bridges the
knowledge gap between seen and unseen classes. Earlier lines of work [20, 1] use visual attributes to
characterize object classes. Although visual attributes achieve compelling results, obtaining them
involves a laborious process that requires manual annotation by human experts not scalable to data
sets with a large number of fine-grained object classes. When dealing with fine-grained species
classification, apart from scalability, a more pressing obstacle is how to define subtle attributes
potentially characteristic of species that have never been observed.

As an alternative to manual annotation, several studies [10, 13, 2, 42, 30, 5] proposed to learn side
information that requires less effort and minimal expert labor such as textual descriptions, distributed
text representations, like Word2Vec [25] and GloVe [29], learned from large unsupervised text corpora,
taxonomical order built from a pre-defined ontology like WordNet [26], or even human gaze reaction
to images [18]. The accessibility, however, comes at the cost of performance degradation [2, 35]. A
majority of ZSL methods implicitly assume strong correlation between side information and image
features, which is true for handcrafted attributes but less likely to be true for text representations or
taxonomic orders. Consequently, all these methods experience significant decline in performance
when side information is not based on visual attributes.

3 Barcode of Life Data and DNA Embeddings

In this study, we present the fine-grained INSECT dataset with 21, 212 matching image/DNA pairs
from 1, 213 species (see Fig. 1 for sample images). Unlike existing benchmark ZSL datasets, this new
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Figure 2: Attribute extraction from mitochondrial DNA.

dataset uses DNA as side information and can be best characterized with the high degree of similarity
among classes. Among the existing benchmark datasets, SUN contains the largest number of classes
(717) but classes in SUN represent a wide range of scene categories related to transportation, indoor
and outdoors, nature, underwater etc., and as such can be considered a relatively coarse-grained
dataset compared to the INSECT dataset we are introducing in this study.

All insect images and associated DNA barcodes in our dataset come from the Barcode of Life
Data System (BOLD) [31, 32]. BOLD is an open-access database in which users can upload DNA
sequences and other identifying information for any living organism on Earth. The database provides
approximately 658 base pairs of the mitochondrial DNA barcode extracted from the cytochrome c
oxidase I (COI) gene along with additional information such as country of origin, life-stage, order,
family, subfamily, and genus/species names.

Data Collection. We collected image/DNA pairs of insects that originate from three orders: Diptera
(true flies), Coleoptera (beetles) and Hymenoptera (sawflies, wasps, bees, and ants). While the dataset
is in general clean, manual effort was devoted to further curate the dataset. Only cases with images
and matching DNA barcodes of adult insects are included. Images from each species were visually
inspected and poor quality images were deleted. Only species with larger than ten instances were
included. The final dataset consisted of 21, 212 images and 1, 213 insects species of which 254 belong
to Diptera (133 genera), 564 to Coleoptera (315 genera) and 395 to Hymenoptera (130 genera). We
extracted image features, namely image embeddings, using a pre-trained (on ImageNet 1000 classes)
ResNet101 model [15]. Images are resized to 256× 256 and center-cropped before fed to the ResNet
model. No other pre-processing is applied to the images.

Y all Y s Y u

#Images 21,212 3,525 2,425
#Classes 1,213 1,080 121

Table 1: ZSL split details. Y s, and
Y u denote the seen and unseen test
sets, whereas Y all represents entire data.
There are 15, 262 (21, 212 − 3, 525 −
2, 425) samples left for the training set.

Data Split. We randomly chose 10% of all species as
unseen classes for the test set leading to 1, 092 seen and
121 unseen classes. Similarly, we randomly chose 10%
of the 1, 092 training classes as unseen classes for the
validation set. Samples from seen classes were split by a
80/20 ratio in a stratified fashion to create seen portion
of the train and test datasets. In the dataset there were a
few hundred cases where multiple image views (dorsal,
ventral, and lateral) of the same insect were present. To
avoid splitting these cases between train and test, we made
sure all instances of the same insect are included in the
training set. As a result, 12 of the 1, 092 seen classes in the training set were not represented in the
test set. Our dataset splits are summarized in Table 1.

DNA Embeddings. We trained a Convolutional Neural Network (CNN) to learn a vector represen-
tation of DNA barcodes in the Euclidean space. First, the consensus sequence of all DNA barcodes in
the training set with 658bp is obtained. Then, all sequences are aligned with respect to this consensus
sequence using a progressive alignment technique implemented in MATLAB R2020A (Natick, MA,
USA). A total of five tokens are used, one for each of the four bases, Adenine, Guanine, Cytosine,
Thymine, and one for others. All ambiguous and missing symbols are included in the others token. In
pre-processing, barcodes are one hot encoded into a 658x5 2D array, where 658 is the length of the
barcode sequence (median of the nucleotide length of the DNA data).
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To train the CNN model, a balanced subset of the training data is subsampled, where each class
size is capped at 50 samples. The CNN is trained with 14, 723 barcodes from 1, 092 classes. No
barcodes from the 121 unseen classes are employed during model training. The training set is
further split into two as train (80%) and validation (20%) by random sampling. We used 3 blocks
of convolutional layers each followed by batch normalization and 2D max-pooling. The output
of the third convolutional layer is flattened and batch normalized before feeding the data into a
fully-connected layer with 500 units. The CNN architecture is completed by a softmax layer. We
used the output of the fully-connected layer as the embeddings for DNA. Class level attributes are
computed by the mean embedding of each class. The DNA-based attribute extraction is illustrated in
Figure 2. The details of the model architecture is depicted in Figure 3 in Supplementary material.
We used ADAM optimizer for training the model for five epochs with a batch size of 32 (with a
step-decay initial learning rate = 0.0005 and drop factor= 0.5, β1 = 0.9, β2 = 0.999). The model is
developed in Python with Tensorflow-Keras API.

Predictive accuracy of DNA embeddings. Although the insect barcodes we used are extracted
from a single gene (COI) of the mitochondrial DNA with a relatively short sequence length of 658
base pairs, they are proven to have exceptional predictive accuracy; the CNN model achieves a 99.1%
accuracy on the held-out validation set. Note that, we only used the data from training seen classes
to train the CNN model. In order to validate the generalizability of embeddings to unseen data,
we trained a simple K-Nearest Neighbor classifier (K = 1) on the randomly sampled 80% of the
DNA-embeddings of unseen classes and tested on the remaining 20%. The classifier had a perfect
accuracy for all 121 but one classes with an overall accuracy of 99.8%.

To demonstrate that the approach can be easily extended to larger members of the animal kingdom,
we compiled approximately 26, 000 DNA barcodes from 1, 047 bird species to train another CNN
model (ceteris paribus) to learn the DNA embeddings for CUB dataset (see the Supp. materials for
details). The CNN model achieved a compelling 95.60% on the held-out validation set.

4 Bayesian Zero-shot Learning

Object classes in nature already tend to emerge at varying levels of abstraction, but the class hierarchy
is more evident when classes represent species and species are considered the lowest taxonomic
rank of living organisms. We build our approach on a two layer hierarchical Bayesian model that
was previously introduced and evaluated on benchmark ZSL datasets with promising results [6].
The model assumes that there are latent classes that define the class hierarchy in the image space
and uses side information to build the Bayesian hierarchy around these latent classes. Two types of
Bayesian priors are utilized in the model: global and local. As the name suggests, global priors are
shared across all classes, whereas local priors represent latent classes, and are only shared among
similar classes. Class similarity is evaluated based on side information in the Euclidean space. Unlike
standard Bayesian models where the posterior predictive distribution (PPD) forms a compromise
between prior and likelihood, this approach utilizes posterior predictive distributions to blend local
and global priors with data likelihood for each class. Inference for a test image is performed by
evaluating posterior predictive distributions and assigning the sample to the class that maximizes the
posterior predictive likelihood.

Generative Model. The two-layer generative model is given below.

xjik ∼ N(µji,Σj), µji ∼ N(µj ,Σjκ
−1
1 ), µj ∼ N(µ0,Σjκ

−1
0 ), Σj ∼W−1(Σ0,m)

(1)

where j, i, k represent indices for local priors, classes, and image instances, respectively. We assume
that image feature vectors xjik come from a Gaussian distribution with mean µji and covariance
matrix Σj , and are generated independently conditioned not only on the global prior but also on their
corresponding local priors.

Each local prior is characterized by the parameters µj and Σj . µ0 is the mean of the Gaussian prior
defined over the mean vectors of local priors, κ0 is a scaling constant that adjusts the dispersion of the
means of local priors around µ0. A smaller value for κ0 suggests that means of the local priors are
expected to be farther apart from each other whereas a larger value suggests they are expected to be
closer. On the other hand, Σ0 and m dictate the expected shape of the class distributions, as under the
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inverse Wishart distribution assumption the expected covariance is E(Σ|Σ0,m) = Σ0

m−D−1 , where D
is the dimensionality of the image feature space. The minimum feasible value of m is equal to D+ 2,
and the larger the m is the less individual covariance matrices will deviate from the expected shape.
The hyperparameter κ1 is a scaling constant that adjusts the dispersion of the class means around
the centers of their corresponding local priors. A larger κ1 leads to smaller variations in class means
relative to the mean of their corresponding local prior, suggesting a fine-grained relationship among
classes sharing the same local prior. Conversely, a smaller κ1 dictates coarse-grained relationships
among classes sharing the same local prior. To preserve conjugacy of the model, the proposed model
constrains classes sharing the same local prior to share the same covariance matrix Σj . Test examples
are classified by evaluating posterior predictive distributions (PPD) of seen and unseen classes. As
illustrated in Fig. 3 the PPD in general incorporates three sources of information: the data likelihood
that arises from the current class, the local prior that results from other classes sharing the same
local prior as the current class, and global prior defined in terms of hyperparameters. PPDs for seen
classes include the global prior and data likelihood and are derived in the form a Student-t distribution
whereas for unseen classes the data likelihood does not exist as no image samples are available for
these classes. We leave the details of derivations to the supplementary material and here explain the
formation of surrogate classes in terms of only local and global priors.

Surrogate
Unseen class 

  ...

Local prior
estimation

Seen class

Current class
LikelihoodK most similar seen classes

Global prior

Surrogate-class Formation Seen-class Formation

Figure 3: Class formations for PPD dur-
ing inference.

Surrogate classes. According to the generative model
in (1), groupings among classes are determined based on
local priors. Thus, once estimated from seen classes, local
priors can be used to define surrogate classes for unseen
ones during inference. Associating each unseen class with
a unique local prior forms the basis of our approach. The
local prior for each unseen class is defined by finding the
K seen classes most similar to that unseen class. The sim-
ilarity is evaluated by computing the L2 (Euclidean) dis-
tance between class-level attribute or embedding vectors
(φ) obtained from the side information available. Once a
local prior is defined for each unseen class the PPD for the
corresponding surrogate class can be derived in terms of
only global and local priors as in equation (2). Test exam-
ples are classified based on class-conditional likelihoods
evaluated for both seen and surrogate classes.

P (x|{x̄ji, Sji}ti=j ,µ0, κ0, κ1) = T (x|µ̄j , Σ̄j , v̄j); µ̄j =

∑
i:ti=j

njiκ1

(nji+κ1) x̄ji + κ0µ0∑
i:ti=j

njiκ1

(nji+κ1) + κ0
,

v̄j =
∑
i:ti=j

(nji − 1) +m−D + 1, Σ̄j =
(Σ0 +

∑
i:ti=j

Sji)(κ̃j + 1)

κ̃j v̄j
(2)

where, x̄ji, Sji and nji represent sample mean, scatter matrix and size of class i associated with
local prior j, respectively and κ̃j is defined as in Eq. (30) in the supplementary material1.

Rationale for the hierarchical Bayesian approach and limitations. We believe that the hierar-
chical Bayesian model is ideally suited for fine-grained zero-shot classification of species when DNA
is used as side information for the following reasons. The performance of the model in identifying
unseen classes depends on how robust the local priors can be estimated. This in turn depends on
whether or not the set of seen classes contain any classes similar to unseen ones. As the number of
seen classes increases, seen classes become more representative of their local priors, more robust
estimates of local priors can be obtained, and thus, unseen classes sharing the same local priors as
seen classes can be more accurately identified. On the other hand, if the class-level side information is
not specific enough to uniquely characterize a large number of classes, then the model cannot evaluate
class similarity accurately and local priors are estimated based on potentially incorrect association
between seen and unseen classes. In this case having a large number of seen classes available may
not necessarily help. Instead, highly specific DNA as side information comes into play for accurately
evaluating class similarity. If a unique local prior can be eventually described for each unseen class,

1The code and dataset are available at https://github.com/sbadirli/Fine-Grained-ZSL-with-DNA
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then unseen classes can be classified during test time without the model having to learn the mapping
between side information and image features beforehand. Uniqueness of the local prior can only be
ensured when the number of seen classes is large compared to the number of unseen classes. Thus,
the ratio of the number of seen and unseen classes becomes the ultimate determinant of performance
for the hierarchical Bayesian model. The higher this ratio is the higher the accuracy of the model will
be. An experiment demonstrating this effect is performed in Section 5.3.

If the same set of K classes is found to be the most similar for two different unseen classes, then these
two unseen classes will inherit the same local prior and thus they will not be statistically identifiable
during test time. The likelihood of such a tie happening for fine-grained data sets quickly decreases as
the number of classes increases. In practice we deal with this problem by replacing the least similar
of the K most similar seen classes by the next most similar seen class for one of the unseen classes.

5 Experiments

In this section we report results of experiments with two species datasets that use DNA as side
information. Details of training and hyperparameter tuning are provided in the supplementary
material along with the source code of our methods.

5.1 Experiments with the INSECT dataset

We compare our model (BZSL) against state-of-the-art (SotA) ZSL methods proved to be most
competitive on benchmark ZSL datasets that use visual attributes or word vector representations as
side information. Selected SotA models represent various ZSL categories: (1) Embedding methods
with traditional [1, 33] and end-to-end neural network [45] approaches, (2) FGNs using VAE [35]
and GAN [40], and (3) end-to-end few shot learning approach extended to ZSL [39].

Method US S H
CRNet [45] 13.33 19.70 15.90
ALE [1] 2.86 27.18 5.17
RelationNet [39] 3.25 24.37 5.73
CADA-VAE [35] 14.55 20.81 17.10
ESZSL [33] 3.41 18.61 5.77
LsrGan [40] 12.58 30.41 17.75
BZSL 20.83 38.30 26.99

Table 2: Generalized ZSL results on Insect data
using DNA barcodes as attributes.

Table 2 displays seen and unseen accuracies and
their harmonic mean on the INSECT data using
DNA as the side information. Results suggest
that the large number of seen classes along with
the highly specific nature of DNA information
in characterizing classes particularly favors the
Bayesian method to more accurately estimate
local priors and characterize surrogate classes.
The harmonic mean achieved by the proposed
method is 52% higher than the harmonic mean
achieved by the second best performing tech-
nique. Similar levels of improvements are main-
tained on both seen and unseen class accuracies.
The next top performers are FGNs. CADA-VAE uses a VAE whereas LsrGan utilizes GAN to
synthesize unseen class features, then both train a LogSoftmax classifier for inference. Lower unseen
class accuracies suggest that FGNs struggle to synthesize meaningful features in the image space. On
the other hand, CRNet that uses end-to-end neural network to learn the embedding between semantic
and image spaces renders slightly worse performance than FGNs. It seems, non-linear embedding
also works better than a linear (ESZSL) and bilinear (ALE) ones for this specific dataset. RelationNet
is amongst the ones with the lowest performance, as the method is explicitly designed for Few-shot
learning and expects the side information to be strongly correlated with image features. The weak
association between side information and image features affects the performance of both FGNs and
embedding methods, but the traditional embedding methods suffer the most.

5.2 Experiments with the benchmark CUB dataset

To demonstrate the utility of DNA-based attributes in a broader spectrum of species classification,
we procured DNA barcodes, again from the BOLD system, for bird species in the CUB dataset. For
this experiment, we derived 400 dimensional embeddings in order to have the same size with word
vectors and eliminate the attribute size effect. There were 6 classes, 4 seen and 2 unseen, that did not
have DNA barcodes extracted from COI gene in the BOLD system. These classes were excluded
from the dataset but the proposed split from [43] is preserved otherwise.
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Attributes Word Vectors DNA
Method US S H US S H US S H
CRNet [45] 44.28 59.84 50.89 22.75 45.92 30.43 9.27 56.56 15.93
ALE [1] 25.15 60.80 35.59 3.95 48.57 7.31 3.50 50.18 6.54
RelationNet [39] 11.66 44.81 18.50 8.67 36.16 13.99 5.33 40.83 9.42
CADA-VAE [35] 47.15 53.11 49.95 26.45 41.98 32.45 19.42 37.05 25.48
ESZSL [33] 15.58 50.66 23.84 2.26 23.86 4.12 5.99 5.38 5.67
LsrGan [40] 47.65 56.97 51.89 24.63 37.96 29.88 15.99 33.57 21.66
BZSL 31.49 50.61 38.82 22.43 45.00 29.94 27.46 48.14 34.97

Table 3: Generalized ZSL results on CUB data using original visual attributes, word vectors, and
DNA attributes.

The results shown in Table 3 validate our hypothesis that when side information is not strongly
correlated with visual characteristics of object classes (like in word vectors or DNA) both embedding
methods and FGNs display significant performance degradation. With the exception of the proposed
Bayesian model, word vector representation yields better accuracy than DNA-based attributes for all
models. This phenomenon can be explained by our observation that text fragments related to common
animals/birds in the Wikipedia/Internet often include some morphological traits of the underlying
species. Hence, word vector representation is expected to have higher degree of correlation to visual
attributes than DNA information. Our model produces the best results, 34.97% vs 32.45% when the
side information is not derived from visual characteristics of classes. This outcome validates the
robustness of the Bayesian model to diverse sources of side information and emphasizes the need for
more robust FGN or embedding based models in more realistic scenarios where hand-crafted visual
attributes are not feasible.

5.3 The effect of the number of seen classes on performance

Local priors are central to the performance of the hierarchical Bayesian model. Here, we perform
experiments to show that as the number of seen classes increases while the number of unseen classes
fixed, each unseen class can be associated with a larger pool of candidate seen classes and more
informative local priors can potentially be obtained, which in turn leads to more accurate identification
of unseen classes. To demonstrate this effect we run two experiments. In the first experiment we use
the same set of unseen classes as in Section 5.1 but gradually increase the number of seen classes
used for training. In the second experiment we double the size of the unseen classes and gradually
include the remaining classes into training as seen classes. The first experiment is also performed for
CADA-VAE. LsrGan is skipped for this experiment due to long training time. To account for random
subsampling of seen classes each experiment is repeated five times and error bars are included in each
plot. There is a clear trend in these results that further highlights the intuition behind the hierarchical
Bayesian model and explains why this model is well-suited for fine-grained ZSL. When 10% of the
classes are used as unseen, unseen class accuracy improves with increasing number of seen classes
until it flatlines beyond the 60% mark while seen class accuracy always maintained around the same
level (see Fig. 4a). When 20% of the classes are used as unseen no flatlining effect in unseen class
accuracy is observed even at 100% mark, which suggest that there is still room for improvement in
unseen class accuracy if more seen classes become available (see Fig. 4b). For CADA-VAE unseen
class accuracy initially improves and then flatlines beyond 80% mark but this improvement comes at
the expense of significant degradation in seen class accuracy, which suggest that as the number of
seen classes increase generated features further confound the classifier as would be expected of an
FGN for a fine-grained dataset.

5.4 Trade-off between seen and unseen class accuracies

The Bayesian model can leverage different hyperparameter settings to modify the operating point
of the classifier to favor seen class accuracy over unseen one or vice versa. In this experiment, we
investigate the effect of κ0 and κ1 on seen and unseen class accuracies. Recall that κ0 adjusts the
dispersion of surrogate-class centers with respect to the center of the overall data and κ1 adjusts the
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Figure 4: The effect of the number of seen classes on the performance of BZSL and CADA-VAE.
Each experiment is repeated five times to account for random subsampling of seen classes.

dispersion of actual class centers with respect to their corresponding surrogate-class centers. The
smaller these parameters are the higher the dispersion will be.
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Figure 5: Effects of κ0 and κ1 on INSECT data.

The impression from Figure 5 reflects that un-
seen class accuracy is highest when κ1 is close
to 1, more precisely κ1 ∈ [0.1, 1], and drops
significantly lower in both directions, i.e., for
κ1 << 1 and κ1 >> 1. As expected the op-
posite of this pattern is observed for seen class
accuracy. Although both seen and unseen class
accuracies are highly responsive to the selection
of κ1, the changes are less receptive with re-
spect to κ0. Moving κ1 towards zero encodes
a local prior that imposes unrealistically large
dispersion for centers of actual-classes sharing
the same local prior, which violates the main
assumption of our model that classes sharing the
same local prior are supposed to be semantically
similar classes. On the other hand moving κ1 to-
wards infinity encodes a local prior that imposes
limited to no deviation among centers of actual classes which is another extreme that is not true for
real-world datasets, i.e. classes are supposed to be statistically identifiable.

In both extremes unrealistic prior assumptions that cannot be reconciled with the characteristics of
real-world data sets impede knowledge transfer between seen and unseen classes and lead to poor
classification performance on unseen classes. On the other hand, the same extreme assumptions do
not affect seen class accuracies at the same scale, because seen classes circumvent local priors and
are modeled with the data likelihood. Since INSECT data is very fine-grained, harmonic mean peaks
when κ1 ≥ 1. We also conduct an ablation study to investigate the effect of different components of
the model on the performance, the results of which are reported in the supplementary material.

6 Conclusions

For the first time in the ZSL literature we use DNA as a side information and demonstrate its utility
in evaluating class similarity for the purpose of identifying unseen classes in a fine-grained ZSL
setting. On the CUB dataset, despite being trained with less than 30,000 very short sequences, we
find DNA embeddings to be highly competitive with word vector representations trained on massive
text corpora. We emphasize the importance of DNA as side information in zero-shot classification of
highly fine-grained species datasets involving thousands of species, and on the INSECT dataset, show
that a simple Bayesian model that readily exploits inherent class hierarchy with the help of DNA
can significantly outperform highly complex models. We show that SotA ZSL methods that take the
presence of an explicit association between visual attributes and image features for granted, suffer
significant performance degradation when non-visual attributes such as word vectors and WordNet are
used as side information. The same effect is observed with DNA embeddings as well. Although visual

9



attributes tend to be the best alternative as side information for a coarse-grained species classification
task, they quickly lose their appeal with an increasing number of classes. Considering the tens of
thousands of described species and even larger number of undescribed species, DNA seems to be the
only feasible alternative to side information for large-scale, fine-grained zero-shot classification of
species.

These favorable results by a simpler model suggest that as the number of classes increases along with
inter-class similarity, the complexity of the mapping between side information and image attributes
emerges as a major bottleneck at the forefront of zero-shot classification. A promising future research
avenue appears to be implementing hierarchically organized FGNs where each subcomponent only
operates with a small subset of seen classes all sharing the same local prior.

This work does not present any foreseeable negative societal consequences beyond those already
associated with generic machine learning classification algorithms.
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