
Group Link Prediction
Andrew Stanhope1, Hao Sha1, Danielle Barman2, Mohammad Al Hasan1, and George Mohler1

1Department of Computer & Information Science, Indiana University Purdue University Indianapolis
2Department of Mathematics & Computer Science, University of Wisconsin-River Falls

Abstract—Due to its universal applications in the domain of
social network analysis, e-commerce, and recommendation sys-
tems, the task of link prediction has received enormous attention
from the data mining and machine learning communities over the
last decade. In its original setting, the task only predicts whether
a pair of entities who are not connected at present time will form
a connection in future. However, in real-life an entity sometimes
join a group (or a community), thus making a connection with
the group (or the community), instead of connecting with an
individual. Existing solutions to link prediction are inadequate
for solving this prediction task. To overcome this challenge,
in this work we propose a novel problem named group link
prediction which focuses on evaluating the likelihood for a
candidate to become a member of a group at a given time. The
problem has potential applications such as friendship or group
suggestions on Facebook or other social networks, as well as
co-authorship suggestion, or group email recommendations. To
solve the problem, we propose a Long Short-term Memory based
model that inputs the embedding vectors of the group and outputs
the conditional probability distributions for the candidates. We
also introduce a composite long short-term memory model that
integrates keyword information. Experimental results on real-
world data sets validate the superiority of our proposed model
in comparison to various baseline methods.

Index Terms—Link Prediction, Long Short-Term Memory,
Graph Embedding, Group Link Prediction

I. INTRODUCTION

Link prediction [1], [2] is a widely studied problem with
successful applications in social networks [1], co-authorship
networks [3], protein-protein interactions [4] and item recom-
mendation [5]. For a social network, such as, Facebook, link
prediction would view the network as a graph where the users
are nodes and their “friendships” are edges. Given an existing
state of a network and a pair of users who are not connected
in the existing state, link prediction predicts the likelihood of
forming a future connection between those pair of users. Such
a solution can then be used by the social network platforms
for generating friendship recommendation. Similarly, in a co-
authorship network, link prediction evaluates the likelihood
of future collaboration between a pair of authors who have
never published together before. In the bioinformatics domain,
experimentally generated protein-protein interaction networks
usually suffer from missing edges (high false-negative rate)
[4]. Link prediction in such networks can improve the in-
formation quality by recovering the missing edges. In item
recommendation, users and items can be represented by nodes
in a bipartite network, while their interactions can be viewed as

Fig. 1: Group Link Prediction Visual. The red nodes in the
circle represent a group while the blue node represents a
candidate node. In the second image, the candidate node is
integrated into the group with edges forming between it and
all of the group members.

links. Link prediction can then be applied to predict potential
user-item interaction.

The conventional setting of a link prediction task only looks
at a pair of entities and evaluates the likelihood of forming
a link between them. However, in many real-life scenarios,
we are more interested in the possible connections between
an individual entity and a group of entities. For instance: a
group of researchers may like to expand their network and
identify a potential collaborator; An event organizer may want
to send out invitations to those who are likely to join the
current group of participants; Social network platforms (Say,
Facebook or LinkedIn) may want to build a platform app,
which recommends a potential person to a group leader; An
email application may suggest a missing person’s email to a
group email-list. In all these applications, the task is to predict
a potential entity which would form a link to a given group,
not to an individual entity—existing link prediction framework
cannot be readily applied to these problems. Therefore, in this
work, we formalize a novel problem on network, namely group
link prediction and propose a recurrent neural network (RNN)
[6], [7] based model for solving it. In specific, we define a
group as a collection of at least two distinct entities; group
link prediction then identifies entities that are most likely to
form a link to the given group. The above formulation can
also be used for recovering missing members of a given group.
Note that, in our group link formulation, we focus on the cases
where there is only one member missing from the group. An
illustration of our problem formulation is given in Fig. 1. The
big circle (left panel) represents a group of three members (red
nodes), and we identify the blue node as the missing member;
adding it back to the group generates four-member group in
the right panel.

Traditionally, link prediction solutions use various topolog-978-1-7281-0858-2/19/$31.00 ©2019 IEEE

ical similarity measures which can be used for computing a
similarity value between two nodes who are not connected
[1], [3], [5]. These similarity measures can be further divided
into neighbor-based (such as Common Neighbor, Jaccard’s
Coefficient, Adamic/Adar and Preferential Attachment) and
path-based (such as, Graph Distance, Katzβ , and hitting time).
Given the current state of the network, we can evaluate
the similarity measures between any disconnected pairs and
predict the pairs with high similarity scores to form a link
in the future. Link prediction can also be posed as a binary
classification problem with the labels indicating whether two
entities are connected (positive) or not (negative) [3]. In this
approach, the features are no longer confined to the topological
properties, rather domain-specific knowledge such as keyword
attributes can also be incorporated. Notably, in recent years,
various network embedding methods such as Node2Vec [8],
LINE [9], and Graph2Gauss [10] are proposed, which learn
node/edge features in unsupervised manner so that they can
be used for the downstream supervised link prediction task.
Link prediction on dynamic networks has also been considered
by some works [11]–[13], where the temporal evolution of a
network is factored in the prediction task through temporal
node embedding. None of these solutions are suitable for the
task of group link prediction, which is the focus of this work.

In this work, we propose a group link prediction model
by using long short-term memory (LSTM) [7] network. The
proposed model is able to utilize temporal interactions of
nodes for obtaining embedding of nodes in a continuous time
domain, which is useful for better link prediction. Besides,
it enables an effective approach for obtaining the embedding
of a group from the embedding of nodes. Compared to the
dynamic network embedding methods, our LSTM approach
has the advantage of being an end-to-end model, where the em-
bedding vectors and the classifier are trained simultaneously
and specifically for the group link prediction task. Finally, our
LSTM model can take attributes (such as keywords) as inputs,
thus allowing the incorporation of domain knowledge within
the model. The contributions of this work are three fold:

1) We extend the link prediction problem to predicting the
link between an individual and a group. We name this
new problem ”group link prediction”.

2) We propose an LSTM-based model to perform dynamic
group link prediction. We also introduce a second LSTM
to incorporate entity/group attributes.

3) We compare our model with various baselines for four
real-world datasets to show the superiority of the pro-
posed model for predicting the link between an individ-
ual entity and a given group.

The rest of the paper is organized as follows. In Section
II we discuss the design of the Long Short-term Memory
(LSTM) method and give background on network embedding.
In section Section III, we review related works in the area
of link and group link prediction. Section IV gives detailed
description of our method. In Section V, we describe the
experiments and present the results. Finally, we summarize

our work in section VI.

II. BACKGROUND

A. Long Short-Term Memory Architecture

Long Short-Term Memory (LSTM) [7] is a special kind
of Recurrent Neural Network (RNN) [6], for modeling dy-
namic behaviors. It resolves the vanishing/exploding gradient
problem of traditional RNNs [14], [15] by introducing a cell
state. Thus, the current states are collectively determined by
the current input and the previous hidden and cell states.
Such design effectively reduces the multiplicative effect of
the small or large gradients. LSTM has been successfully
applied to various sequence related learning problems, such as,
speech recognition [16], language translation [17], handwriting
synthesis [18], and image generation [19]. Here we adopt an
LSTM whose cell is defined as the following:

it = σ(Wixt + Uiht−1 + Vict−1 + bi),
ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf),
ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),
ot = σ(Woxt + Uoht−1 + Voct + bo),
ht = ot � tanh(ct),

(1)

where σ is the sigmoid function and � is the Hadamard
product. xt, ht, and ct are the input, the hidden state, and the
cell state, respectively. it, ft, and ot are intermediate states.

B. Network Embedding

Many real-life datasets are in the form of networks or can
be converted to networks. As networks can contain billions of
nodes and edges, it would be intractable to perform complex
inferences over the entire network. To alleviate this difficulty,
various graph embedding methods have been proposed. In
this work, we focus on the methods that embed nodes,
while other methods embed edges [20] and (sub)graphs [21].
Node embedding methods essentially map nodes to some low
dimensional latent space, making it possible to use exist-
ing machine learning algorithms for the downstream tasks
(e.g. link prediction, classification, or community detection).
Traditionally, embedding vectors are obtained by applying
dimensionality reduction (such as PCA [22], MCA [23], and
Laplacian Eigenmaps [24]) on the adjacency matrix. Inspired
by the recent developments in neural language models [25], a
series of deep learning methods [8], [9], [26] are proposed to
learn node embeddings in the network context. The DeepWalk
model [26] first samples a collection of short random walks
and then apply the Skip-gram [25] framework to learn the
node embeddings. LINE [9] and Node2Vec [8] are extentions
to DeepWalk, as the former uses a breadth-first search and later
combines both breadth-first search and the depth-first search.
In this work, we adopt LINE and Node2Vec to learn node
embeddings in our baseline methods.

III. RELATED WORKS

The link prediction problem has gotten a lot of attention in
recent years. One of the most effective and cost-efficient ways
to analyze the link prediction problem is to employ network
embeddings [27]. There have been a number of network
embedding methods proposed, ranging from static embeddings
like DeepWalk [26], Node2Vec [8], and LINE [9], to dynamic
embeddings like DynamicTriad [12] and TNE [13]. In additon,
attribute embeddings such as Graph2Gauss [10] and Neural-
Brane [28] have been proposed to incorporate node attributes.
Despite their advantages, static models are not able to capture
the time dependency in the dataset. Although the dynamic
methods alleviate this issue, they do not allow attributes and
solely depend on the network topology. Recently, a dynamic
attributed network embedding model, DANE [29], has been
proposed. Nevertheless, it is not an end-to-end model specifi-
cally designed for the group link prediction task. To the best of
our knowledge, this is the first work that formally defines the
group link prediction problem and provides a novel LSTM-
based approach that enables end-to-end training.

IV. METHODS

A. Problem Description

We are given a set of n members S = {v1, v2, ..., vn}, where
the subscript of v represents identifier of the members. Also
given a sequence of events, {(t1, s1), (t2, s2), · · · , (ti, si)}, in
which each event (say, i) has an event time-stamp, ti and the
member-list, si ⊆ S, who collectively perform the event. For
an event si, we use si,1, si,2, · · · , si,k to denotes the ids of the
k members of the event i. Now, for a future event (say, n+m),
the task of group link prediction is to predict the missing
member vsn+m,j given that, vsn+m,1, vsn+m,2, ..., vsn+m,j−1

are known to participate in the event n+m.

B. Data Processing

We organized the datasets into sequences of time-group
pairs {(ti, si)}, sorted in time ascending order (i.e. ti−1 < ti).
Now we split each data set into a training, validation, and test
set (split 80-10-10). We further filtered out the group members
that do not appear in the training set from the validation and
test sets and we removed the data points with less than three
members in each set. Let Strain, Svalid, and Stest denote
the set of members in the training set, validation set, and
test set, respectively. The resulting data sets then satisfy (1)
Svalid ⊆ Strain (2) Stest ⊆ Strain, and (3) S = Strain.

C. Keyword Extraction

For the DBLP and Enron email datasets we extracted key-
words from the article titles and email bodies, respectively, to
obtain attributes. We followed the typical natural language pro-
cessing process - tokenizing the text, stemming/lemmatization
and removing filler words as well as common stopwords. We
then ranked the words by their global frequencies and retrieved
the keywords based on the frequencies. Then we assigned the
keywords to the corresponding authors or email addresses. The
finalized keywords are presented in Fig. 2. Notice that for the

Fig. 2: Top keywords for DBLP and Enron data sets. The
DBLP data set had one, two, three and four word phrases while
Enron only had single word keywords. The number displayed
with each word is the global frequency which is the number
of times that word showed up in the text.

Fig. 3: Network Architecture for the LSTM model without
keywords. The shaded area represents LSTM while the cyan
circles represent cells. For illustration purpose, we only show
two layers and six cells. xi+j denotes the j’th input to the
LSTM. hi+j and ci+j denote the hidden states and cell states
respectively. The hidden states of the last layer are fed to the
fully-connected layer with Softmax action. ui+j denotes the
j’th output, i.e. the probability of the missing members at i+j
time-step.

DBLP dataset, we also extracted key-phrases of size 2, 3 and
4 using the POS tagging method suggested in [30].

D. Model Formulation

LSTM without attributes. We proposed a multi-layer
LSTM architecture which is illustrated in Fig. 3. The LSTM
(shaded area in Fig. 3) contains a stack of recurrently con-
nected memory cells. Note that the number of layers and cells
are adjustable and not necessarily the same as those in Fig.
3. Summarized in Eq. 2, a cell in LSTM takes an input xi, a
hidden state hi and a cell state ci, and outputs a new hidden
state hi+1 and a new cell state ci+1. As shown in Fig. 3, these
new states are then passed horizontally to the next cell in the

Fig. 4: Network Architecture for the LSTM model with keywords. The shaded areas represent LSTMs while the cyan circles
represent cells. The left LSTM takes embedding vectors of keywords as input; while the right LSTM takes embedding vectors
of groups as input. xl(r)i+j denotes the j’th input to the LSTM. hl(r)i+j and cl(r)i+j denote the hidden states and cell states respectively.
The hidden states of the last layers of the LSTMs are concatenated and fed to the fully-connected layer with Softmax action.
ui+j denotes the j’th output, i.e. the probability of the missing members at i+ j time-step.

same layer and vertically to the cell in the next layer. The
final outputs of the LSTM are fed to a fully-connected layer
with weight W, bias b, and a Softmax activation, to generate
a predictive distribution ui over the candidates for the missing
group member.

(hi+1, ci+1) = cellLSTM (xi,hi, ci)
ui = Softmax(Whi + b)

(2)

The input of the LSTM architecture is a series of em-
bedding vectors representing consecutive groups. A member
(candidate) is mapped to a d dimensional embedding vector
that can be learned upon training. Given a group at time ti,
we randomly hold out a member as our target, and sum the
embedding vectors of the other members as xi. The vectors
xi, xi+1, xi+2, ..., xi+k−1, denoting k consecutive groups, are
fed to the corresponding cells. Note that the hidden states and
the cell states are also d dimensional vectors. The outputs
are the hidden states of the last layer, hi,hi+1, ...,hi+k−1.
They then go through a fully-connected layer with Softmax
activation to generate a series of vectors ui,ui+1, ...,ui+k−1,
representing the probability distributions over the candidates
for the missing members.

Let yi, yi+1, ..., yi+k−1 denote the one-hot encoding of the
actual missing members. The cross-entropy loss can thus be
written as the following:

L = −1

k

k∑
j=1

N∑
l=1

yli+j log(u
l
i+j), (3)

where yli+j and uli+j are the l’th elements of yi+j and ui+j ,
respectively. The summation is over the k time-steps and the
number of candidates N .

LSTM with attributes. For the datasets where keywords
could be extracted, we proposed a network architecture con-

sisting of two LSTMs as illustrated in Fig. 4. The LSTM on
the left inputs the embedding vectors of attributes (keywords)
attached to the groups at each time step; while the LSTM on
the right inputs the embedding vectors for the groups as the
model without keywords. The hidden states of the two LSTMs
are concatenated at the end and fed to the Softmax layer to
generate a probability distribution of the missing members.
Then the same loss function (Eq. 3) can be calculated and
minimized to update the network parameters.

V. EXPERIMENTS

We run our proposed model without keywords (Fig. 3) on
four real-world datasets and compare the performance with
the competing methods. Here we focus on predicting the
missing member of a group provided that the rest of the group
are known at time ti. This falls into the definition of group
link prediction, as we attempt to predict the link between a
candidate and a group. For instance, we attempt to identify
one author from a pool of candidates that is most likely to
publish a paper with a group of known authors.

To train our model, at time ti, we randomly shuffle the mem-
bers in the group si, and hold out the last member vi,k as the
target. Our model then takes the rest of the group as input, and
outputs a conditional probability ui,v = P (v|vi,1, .., vi,k−1, ti)
∀v ∈ S. The loss defined in Eq. 3 is thus evaluated and
minimized for each batch. In the validation set and the test
set, we hold out the last member vi,k of the group at time step
ti without shuffling. We then rank the candidates based on the
conditional probabilities P (v|vi,1, .., vi,k−1, ti), given by our
model. As a performance measure, we evaluate the hit rates
based on the ranking and the true target. For instance, if the
target member is among the five highest ranking candidates,
we count it as a hit for the Hit@5 rate. We estimate the mean
hit rates on the validation set to determine the optimal set of

TABLE I: Data set properties. Number of Events gives the
number of events in each data set (E.g. number of papers,
emails, or shopping carts). |V | and |E| are the number of
nodes and number of edges for each network, respectively.

Data set Number of Events |V | |E|
DBLP 290483 70431 645018
Enron 13011 3153 17903
SFHH 3331 405 128976
Hypertext 2960 111 3065

hyper-parameters. Lastly, we run the model with the optimal
hyper-parameters on the test set and calculate the mean hit
rates as the ultimate measure of the performance.

In addition, we perform the similar task using the LSTM
model with keywords (Fig. 4). The keywords are obtained
from the text attached to the groups using the procedure
described earlier. For example, for the Enron Email dataset,
we extracted keywords from the email texts and assigned
keywords to the participants of the email conversation. Then
we compared the hit rates to those given by the model without
keywords, to examine whether or not including keywords
could improve performance.

We also performed additional experiments for validating
model convergence, and robustness. In the following sections,
we describe the data sets on which we run our experiments
and the competing models with which we compare our LSTM
model.

A. Data Description

DBLP: The DBLP data set contains bibliographical in-
formation of articles published in major computer science
journals and proceedings. For our experiments, we selected
articles published between the years of 2015 and 2019. We
extracted year, number, title and authors from the data set and
then constructed time stamps using the combination of year
and number. We sorted the papers first by the time stamps, then
by title and authors for articles with the same time stamp. We
further filtered out papers with non-English titles and removed
duplicate articles. We also removed the papers with less than
three authors as we are studying groups and two authors are
not considered to be a group. The resulting sequence contained
290, 483 articles.

Enron Email: The Enron email data set contains ∼
500, 000 emails generated by employees of the Enron Cor-
poration. The emails from 2000 to 2001 were adopted here.
We extracted the email addresses and time stamp from each
email across the selected time period. The emails were sorted
by time in ascending order and the punctuation was removed
from all of the email bodies. To construct a network, we
used email addresses of Enron employees as nodes, and
added edges between nodes with at least one email exchanged
between them. The resulting sequence contained 13, 011 email
exchanges.

SFHH Interactions: The SFHH conference data contains
a set of spacial interactions between individuals at the 2009
SFHH conference [31]. To construct the network we consid-

ered groups of individuals in the same spacial area for some
interval of time to be a group, and a timestamp was associated
with that group based on the time that they all entered same
spacial area . The resulting data is comprised of 3331 groups.

Hypertext 2009 Contact Network: The Hypertext data
contains a set of spacial interactions between individuals the
ACM Hypertext 2009 conference [32]. As with the SFHH data,
to construct the network we considered groups of individuals
in the same spacial area for some interval of time to be a group,
and a timestamp was associated with that group based on the
time that they all entered same spacial area . The resulting
data is comprised of 2960 groups.

B. Competing Methods

For the following five models, we converted our data into
a graph where edges are formed between nodes which have
appeared together in a group (e.g. authors who have published
a paper together, or email addresses that have been a part of an
email chain together). For the embedding-based approaches,
we calculated the centroid of the embedding vectors of a
given group and measure the Euclidean distance between the
embedding of a candidate node to the centroid. The nodes
with the smallest distances are selected as most likely to form
a link to the group.

Common Neighbor: In this approach, we first find out the
set of nodes that link to at least one of the group members.
We then rank these nodes by the number of group members
connected to them. The top k nodes are selected from the
set as the k most likely candidates to form a link to the given
group. Using the DBLP dataset as an example, we collect a set
of authors who have published with one of the group members
before but currently not in the group. We then rank the authors
by the number of ”common neighbors” in the given group and
select the top ranking authors.

Node2Vec: We used Node2Vec to embed the nodes from
our graphs into a 20 dimensional vector representation. Then,
using our training set, we removed a single author from each
group and attempted to predict the missing author using the
remainder of the group. This was accomplished using a look-
up table for each of the authors in the group to find their
vector representations, which we then used to compute the
centroid of the group. We then sorted each node from the
graph by distance to the centroid of the group and looked
for the missing node within the closest k nodes. Then, with
each of the groups in the testing set considered together, the
hit rate at k is the percentage of times that the missing node
showed up in the k closest nodes to the centroid. The return
and in-out hyperparameters were tuned using a grid search
over p, q ∈ 0.25, 0.5, 1, 2, 4 as recommended by the original
Node2Vec publication.

LINE: We used the same approach as Node2Vec with
LINE. However, while Node2Vec creates embeddings using
random walks on the graph, LINE attempts to learn embed-
dings for the nodes using an optimizer function. In the case
of LINE, nodes are expected to be close to each other in

TABLE II: Experimental Results.

Hit@5 Hit@10 Hit@20
Common Neighbor 0.571 0.647 0.700
LSTM 0.516 0.551 0.580
Node2Vec 0.350 0.405 0.432

D
B

L
P

Graph2Gauss 0.242 0.298 0.342
LINE 0.197 0.239 0.273
Common Neighbor 0.262 0.380 0.521
LSTM 0.416 0.502 0.581
Node2Vec 0.256 0.381 0.484

E
nr

on

Graph2Gauss 0.267 0.378 0.489
LINE 0.129 0.203 0.287
Common Neighbor 0.018 0.021 0.063
LSTM 0.076 0.121 0.163
Node2Vec 0.006 0.018 0.036

SF
H

H

Graph2Gauss 0.009 0.015 0.027
LINE 0.015 0.021 0.045
Common Neighbor 0.133 0.251 0.422
LSTM 0.360 0.446 0.568
Node2Vec 0.118 0.190 0.312

H
T

09

Graph2Gauss 0.148 0.224 0.297
LINE 0.205 0.236 0.270

the vector embedding space if they are first or second degree
neighbors.

Graph2Gauss: The same approach to Node2Vec was taken
with Graph2Gauss as well, but Graph2Gauss had the added
benefit of being able to create embeddings for an attributed
graph. We ran two variants of the test using Graph2Gauss:
one with and one without attributes. We did this so that we
would be able to determine if the attributes we were using for
these data sets would improve hit rates or if they would act
as noise.

C. Hyper-parameter tuning

For the LSTM model, we tune the number of time-
steps in {64, 128, 256} and the embedding dimension in
{128, 256, 512}. We used a batch size of 32, a learning rate of
1.0, and a 2 layer LSTM architecture. The number of cells in
each LSTM layer is the same as the number of time-steps. We
chose the hidden dimension to be the same as the embedding
dimension. To prevent over-fitting, we used a dropout value
of 0.5.

D. Results

Group link prediction. In Table II, we show the results of
the group link prediction task for our LSTM model without
keywords along with the competing methods over the four
datasets. We used hit rates at 5, 10, and 20 as measures of the
performance. Note that the results here are evaluated using
the test set. We can see that the LSTM model outperforms
the other methods except for the DBLP dataset. The reason
why the Common Neighbor method performs better than the
LSTM method in the DBLP dataset is likely because the
co-authorship in the DBLP data set is very stable and the
structural information plays the primary role in determining
the link between an author and a group. For instance, the
authors who have published together before are most likely to
publish together again. In contrast, the participants of an email
conversation (Enron) or a social contact (SFHH and HT09)

TABLE III: Hit rates with and without keywords. The LSTM
results here are obtained using time-step 64 and hidden di-
mension 128 on the Enron Email data set.

Method Hit@5 Hit@10 Hit@20
LSTM w/o keywords 0.365 0.472 0.589
LSTM w/ keywords 0.390 0.466 0.554

TABLE IV: LSTM: time-step sensitivity. The results are
Hit@5 rates with different time steps.

Data set 64 128 256
DBLP 0.558 0.541 0.583
Enron 0.501 0.499 0.518

are much more dynamic. For instance, employees often send
out emails involving different groups of people given different
topics. Therefore, for these three datasets, our LSTM method
outperforms the other methods by a large margin.

Performance with keywords. We compare the models with
and without keywords in terms of hit rates in Table III. The
experiments were performed using the Enron Email data set.
The keywords were extracted from the email texts following
the procedure described in Sec. IV-C. Both models used 64
time-steps and a hidden dimension of 128. We also kept the
other hyper-parameters identical for both models to ensure
a fair comparison. In Table III, we can see that the model
without keywords outperforms the one with keywords, except
for the Hit@5 case. This indicates that including keywords
might introduce noise instead of providing useful information
to help identify potential group members. Moreover, when
we ran Graph2Gauss, the only competing model that ac-
cepted node attributes, we found that the attributed version
performed far worse than the corresponding non-attributed
model. This coincides with our results from the attributed and
non-attributed versions of the LSTM model.

Model convergence. In Fig. 5, we plot the cost for the
LSTM model without keywords for the DBLP and the Enron
datasets. The cost is the cross-entropy loss defined in Eq. 3.
The curves here indicate a convergence of the training data.
A few spikes appear during the early part of the training data,
which is likely the result of a small batch size (= 32).

Hyper-parameter sensitivity. We examine the impact on
performance of changing some key hyper-parameters. We vary
one hyper-parameter at a time, while keeping the other hyper-
parameters as their optimal values. We use the Hit@5 rate to
indicate the performance. In Table IV, we show the Hit@5
rates with different time-steps for each data set. Note that the
results here are evaluated using the validation set. The results
indicate that a larger time-step renders better performance.
We also test the affect of tuning the embedding dimensions
in Table V. We can see that the best performance is not

TABLE V: LSTM: embedding dimension sensitivity. The
results are Hit@5 rates with different embedding dimensions.

Data set 128 256 512
DBLP 0.360 0.548 0.583
Enron 0.510 0.518 0.465

0 100 200 300 400 500 600 700
number of batches

500

1000

1500

2000

2500

co
st

DBLP

(a) DBLP

0 100 200 300 400 500 600
number of batches

250

500

750

1000

1250

1500

1750

2000

co
st

Email

(b) Enron

Fig. 5: Cost for LSTM with different data sets.

40 30 20 10 0 10 20 30 40
40

30

20

10

0

10

20

30

40
all candidates
known members
top 5 predictions
missing member

(a) DBLP

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80 all candidates
known members
top 5 predictions
missing member

(b) Enron

Fig. 6: Embedding vectors projected onto 2D space. The yellow circles represent the entire set of candidates, while the black
circles represent the group members we already know. The blue triangles are the top 5 predicted members and the red triangle
denotes the target (missing) member.

necessarily achieved at the highest dimension.

Quality of embedding vectors. In Fig. 6, we plot the 2D
projection of the embedding vectors learned from the LSTM
model for the DBLP and the Enron datasets. The figures
are snapshots taken when a hit occurs. The yellow circles
represent the entire set of candidates while the black circles
are the members in a given group. The red triangles are target
(missing) members and the blue triangles are the top 5 most
likely candidates given by our model. We can see from the
figures that the predicted nodes are in the vicinity of the target
nodes, suggesting that the embeddings given by the LSTM
model successfully capture the similarities among the nodes
in the datasets.

VI. CONCLUSIONS

In this work, we proposed a new problem - group link
prediction. Unlike the traditional link prediction which predicts
the link between two individuals, our task was to predict
the link between an individual and a group. To solve the
problem, we proposed two LSTM based models: one with
and one without attributes. The models learned a conditional
probability distribution over the candidates given a group
of known entities at a certain time step. We compared our
model without keywords with a series of competing methods
over four real-world data sets. Our model shows superior
performance for the datasets where the group organizations
are constantly changing. In addition, we found that the LSTM
model without keywords is more effective than the one with
keywords, as the keywords may introduce noise and reduce
performance.

ACKNOWLEDGMENT
This work was supported in part by NSF grants ATD-

1737996, REU-1343123, SCC-1737585, and IIS-1909916.

REFERENCES

[1] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” in Proceedings of the Twelfth International Conference
on Information and Knowledge Management, ser. CIKM ’03. ACM,
2003, pp. 556–559.

[2] D. S. Goldberg and F. P. Roth, “Assessing experimentally derived
interactions in a small world,” Proceedings of the National Academy
of Sciences, vol. 100, no. 8, pp. 4372–4376, 2003.

[3] M. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” 01 2006.

[4] C. Lei and J. Ruan, “A novel link prediction algorithm for reconstructing
proteinprotein interaction networks by topological similarity,” Bioinfor-
matics, vol. 29, no. 3, pp. 355–364, 12 2012.

[5] H. Chen, X. Li, and Z. Huang, “Link prediction approach to collaborative
filtering,” in Proceedings of the 5th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL ’05), June 2005, pp. 141–142.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research,” J. A. Anderson and E. Rosenfeld, Eds.
Cambridge, MA, USA: MIT Press, 1988, ch. Learning Representations
by Back-propagating Errors, pp. 696–699.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[8] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016.

[9] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: large-
scale information network embedding,” CoRR, vol. abs/1503.03578,
2015.

[10] A. Bojchevski and S. Gnnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” in International Confer-
ence on Learning Representations, 2018.

[11] M. Rahman and M. A. Hasan, “Link prediction in dynamic networks
using graphlet,” in Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2016, Riva del Garda,
Italy, September 19-23, 2016, Proceedings, Part I, 2016, pp. 394–409.

[12] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic Network
Embedding by Modelling Triadic Closure Process,” in AAAI, 2018.

[13] L. Zhu, G. V. Steeg, and A. Galstyan, “Scalable link prediction in
dynamic networks via non-negative matrix factorization,” CoRR, vol.
abs/1411.3675, 2014.

[14] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, March 1994.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, ser. ICML’13, 2013.

[16] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume
32, ser. ICML’14, 2014, pp. II–1764–II–1772.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014.

[18] A. Graves, “Generating sequences with recurrent neural networks,”
CoRR, vol. abs/1308.0850, 2013.

[19] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, “DRAW: A recur-
rent neural network for image generation,” CoRR, vol. abs/1502.04623,
2015.

[20] S. Abu-El-Haija, B. Perozzi, and R. Al-Rfou, “Learning edge representa-
tions via low-rank asymmetric projections,” CoRR, vol. abs/1705.05615,
2017.

[21] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’15. ACM, 2015, pp. 1365–
1374.

[22] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37
– 52, 1987, proceedings of the Multivariate Statistical Workshop for
Geologists and Geochemists.

[23] J. B. Kruskal and M. Wish, Multidimensional scaling. Sage, 1978,
vol. 11.

[24] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in Neural Information
Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. MIT Press, 2002, pp. 585–591.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’13, 2013, pp. 3111–3119.

[26] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” CoRR, vol. abs/1403.6652, 2014.

[27] H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques and applications,” CoRR, vol.
abs/1709.07604, 2017.

[28] V. S. Dave, B. Zhang, P. Chen, and M. A. Hasan, “Neural-brane: Neural
bayesian personalized ranking for attributed network embedding,” CoRR,
vol. abs/1804.08774, 2018.

[29] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed
network embedding for learning in a dynamic environment,” CoRR, vol.
abs/1706.01860, 2017.

[30] M. Hasan, W. Spangler, T. Griffin, and A. Alba, “Coa: finding novel
patents through text analysis.” 01 2009, pp. 1175–1184.

[31] M. G’enois and A. Barrat, “Can co-location be used as a proxy for
face-to-face contacts?” EPJ Data Science, vol. 7, no. 1, p. 11, May
2018.

[32] L. Isella, J. Stehl, A. Barrat, C. Cattuto, J. Pinton, and W. Van
den Broeck, “What’s in a crowd? analysis of face-to-face behavioral
networks,” Journal of Theoretical Biology, vol. 271, no. 1, pp. 166–
180, 2011.

