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Abstract

Crime hotspot maps are a widely used and successful method for displaying spatial crime patterns and
allocating police resources. However, hotspot maps are often created over a single timescale using one crime
type. In the case of short-term hotspot maps that utilize several weeks of crime data, risk estimates suffer
from high variance, especially for low frequency crimes such as homicide. Long-term hotspot maps that
utilize several years of data fail to take into account near-repeat effects and emerging hotspot trends. In this
paper we show how point process models of crime can be extended to include leading indicator crime types,
while capturing both short-term and long-term patterns of risk, through a marked point process approach.
Several years of data and many different crime types are systematically combined to yield accurate hotspot
maps that can be used for the purpose of predictive policing gun-related crime. We apply the methodology to
a large, open source data set made available to the general public online by the Chicago Police Department.

1. Introduction ing to risk. Algorithms typically fall into one of two
broad categories, namely nonparametric methods uti-
lizing only event data (kernel hotspot maps being the
predominant choice) or multivariate models that ex-
plicitly incorporate additional variables such as de-
mographics (Wang et al., 2012), income levels (Liu
and Brown, 2003), distance from crime attractors
(Wang et al., 2012; Liu and Brown, 2003; Kennedy
et al., 2010), and leading-indicator crimes (Cohen et
al., 2007; Gorr, 2009). In multivariate models of
hotspots, static variables such as demographics and
distance to crime attractors are predictive of long
term crime hotspots, whereas recent event activity is
predictive of short term hotspots. In the case of ker-
nel density estimation (KDE) and other event based
approaches, multiple timescales are usually not re-
flected in models and either long term hotspot maps
are created using several years of data (Weisburd et
al., 2012) or short term hotspots maps are created

In this article we develop a methodology for the
prediction of homicide, along with precursory gun
crimes, with application to predictive policing. The
problem we consider is as follows: given all past homi-
cide events (time and location), and all other gun-
related crime reports in a police records management
system (RMS), rank a list of geographic areas in a city
according to the risk of homicide. We use homicide
and gun crime in Chicago for illustration, but our
methodology applies more generally to other crime
types and their leading indicators.

Similar problems are considered in a number of
studies (Bowers et al., 2004; Chainey et al., 2008;
Mohler et al., 2011; Kennedy et al., 2010; Wang and
Brown, 2012; Wang et al., 2012; Liu and Brown,
2003; Weisburd et al., 2012) and their solution can
be used to allocate patrol resources each day accord-
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using several weeks or months of data and a spatial
bandwidth on the order of tens or hundreds of meters
(Chainey et al., 2008; Kennedy et al., 2010; Wang
and Brown, 2012). One of the goals of this article is
to illustrate how event-based models of hotspots can
be constructed to estimate both short and long term
hotspots in a systematic way.

In recent articles focused on multivariate modeling
(Wang and Brown, 2012; Kennedy et al., 2010), short
term hotspot maps serve as a method for accuracy
comparison due to their widespread operational use.
Here the short term hotspot map serves as a straw
man, as low event counts lead to high variance in risk
assessment. Multivariate models, on the other hand,
are well suited to handle low event counts by reduc-
ing variance with the introduction of spatial variables
correlated with crime rates. However, police depart-
ments’ RMS often contain crime reports going back
years, if not decades, thus containing large data sets
that can be used to reduce variance and significantly
improve the accuracy of crime hotspot maps. Here
we believe the benefits of hotspot maps stand out,
as for high event counts 1) the error due to variance
is significantly reduced, 2) nonparametric estimates
are potentially less biased than multivariate models,
and 3) kernel based hotspot maps facilitate predic-
tive analytics software that is robust and portable
across various agencies without the need to gather
data outside of the RMS.

We extend the point process model of burglary in-
troduced in (Mohler et al., 2011) to a marked point
process that allows for several years of crime data,
and multiple crime types, to be utilized by hotspot
maps. The model incorporates both fixed risk hetero-
geneity across the city and temporally dynamic risk.
Whereas the model in (Mohler et al., 2011) is fully
non-parametric, we consider a parametric version of
the triggering kernel to balance the added computa-
tional cost associated with the incorporation of lead-
ing indicator crimes.

Our model is related to the decomposition of
hotspots in (Gorr and Lee, 2012) into chronic and
temporary hotspots. Chronic hotspots are long term
in duration and necessitate problem oriented policing
strategies to address the root causes of crime (Clarke
and Eck, 2005; Weisburd et al., 2012). Chronic

hotspots, defined by high crime volume over several
years rather than several weeks, can capture a large
percentage of crime within a small percentage of the
area of a city (Weisburd et al., 2012). Temporary
hotspots, on the other hand, last on the time scale of
weeks or months. Models and policing strategies thus
must be able to detect and react to emerging trends
in order to deter temporary hotspots, otherwise the
hotspots may have moved before maps are generated
and patrols deployed. For example, the Los Angeles
Police Department updates predictive policing mod-
els for every 8 hour shift as new crimes are reported
and directs patrols accordingly.

One technical issue that arises in the creation of
kernel hotspot maps is the selection of bandwidth
or “search radius.” In this work an Expectation-
Maximization (EM) algorithm is developed that al-
lows for the automated selection of model parame-
ters, avoiding the need for hotspot bandwidth param-
eters to be manually tuned by the crime analyst. We
apply the methodology to gun crime and homicide
data in Chicago, illustrating that the predictive accu-
racy of hotspot maps is significantly improved when
utilizing large data sets over several years. In partic-
ular; we find that dynamic hotspots account for only
12 to 15% of gun crime in Chicago and that chronic
hotspots are the most dominant component of the es-
timated point process model. The outline of the ar-
ticle is as follows. In Section 2, we briefly review the
mathematics of hotspot maps and we draw the con-
nections between kernel hotspot maps, self-exciting
point processes, and mixture models. In Section 3,
we provide details of the marked point process model
and in Section 4 we provide details on the EM algo-
rithm for estimating model parameters. In Section 5,
we provide results on the application of the model to
homicide prediction in Chicago.

2. Hotspot maps, self-exciting point pro-
cesses, and mixture models

2.1. Hotspot maps

Crime hotspot maps are a widely used method for
visualizing spatial crime patterns, where spatial maps
are color coded based upon levels of criminal activ-
ity. Our focus here is on kernel based hotspot maps,



which exhibit the important features of hotspot map-
ping, and we refer the reader to (Chainey and Rat-
cliffe, 2005) for a more comprehensive treatment of
the subject.

Given a spatial-temporal crime data set of event
locations (x;,y;) and times t;, a common method of
constructing a kernel hotspot map is to use a subset
of the data consisting of all crimes occurring within
a specified time interval [Ty, T5]:
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In practice this time window is often chosen to be
the past several weeks or months leading up to the
present, but could also be years (Gorr and Lee, 2012)
to estimate chronic hotspots. The kernel g is often a
2D function that decays from the origin.

While the kernels are defined irrespective of a dis-
cretization of space, evaluating A(z,y) on a grid
is still necessary for visualization. Furthermore,
hotspot maps can be used to flag high crime areas for
policing intervention (Bowers et al., 2004; Chainey et
al., 2008), in which case the values of A(z,y) in dif-
ferent discrete regions of a city are used to rank those
areas in terms of priority for receiving policing atten-
tion.

From a mathematical perspective, a hotspot map
can be viewed as a nonparametric estimate of a sta-
tionary Poisson process over the time interval [T7, T3]
Furthermore, by taking the time interval to be mov-
ing, [t—T), t], with ¢ the present day, hotspot maps can
also function as a nonparametric estimator of a non-
stationary point process. For this purpose a more
general “prospective” hotspot map has been intro-
duced (Bowers et al., 2004),

/\(m,y,t) = Zg(x_xhy_yivt_ti)? (2)

t>t;

where g is a space-time kernel that allows more recent
events to be weighted higher than events further in
the past. Research on near-repeat offender behavior
(Bowers et al., 2004; Farrell and Pease, 2001; John-
son, 2008; Johnson et al., 2007) suggests that such an
approach is useful in a policing context for respond-

ing to the contagion effects associated with certain
crime types.

There is an inherent drawback to (2), however, in
that the temporal decay of g creates a small sam-
ple size problem. For example, if the timescale over
which ¢ decays is on the order of several weeks, then
only several weeks of data will be used to assess crime
risk each day. In a typical city this may result in
only several hundred events being used, when sev-
eral thousand (or tens of thousand) may be needed
to reduce the variance of the estimator low enough to
achieve high accuracy in risk assessment. The same
issue arises for (1) if the time interval is chosen to be
several weeks or months, a common interval length
used in police departments. The alternative is then
to use more data, i.e. choosing [T7,T»] to encompass
the entire crime data set. The disadvantage here is
that all crimes in (1) are weighted equally and thus
the map cannot respond to the near-repeat trends
present in crime data.

2.2. Self-exciting point processes

To address these issues, self-exciting point pro-
cesses have been introduced (Mohler et al., 2011),
taking the form,

M@y, t) = plw,y)+ D glz —xiy—yit —ti). (3)

t>t;

The advantage of this formulation of a hotspot map
is that the rate of crime is decomposed into a station-
ary component, i, and a component analogous to the
prospective hotspot map that captures near-repeat
effects. When discretized on a grid, p models chronic
differences in crime rates across different areas of the
city, similar to the “chronic” hotspots described in
(Gorr and Lee, 2012). Because crime records in a
typical RMS often go back 10 years or more, large
data sets can be used to achieve a high level of ac-
curacy when estimating p. Furthermore, state of the
art optimization methods (Murphy, 2012; Veen and
Schoenberg, 2008) can be employed to estimate the
parameters of g determining the spatial and temporal
length scales of near-repeat risk.



2.8. Mizture models

To conclude the section, we make the connection
between hotspot maps, self-exciting point processes,
and kernel mixture models. First, the background
rate p in (3) needs to be estimated from crime data
(x4, v, t;). Because u represents a stationary Poisson
process, one way to estimate u is to use KDE:

u(x,y):aZQQ(x—xi,yfyi), (4)
t>t;

where « is a parameter to be estimated and g5 is a
kernel, possibly different from g. Combining (3) and
(4) yields,

)\(xayvt) =« Zg?(x — LY — y’L)

t>t;

+Zg($*$iay*yi,t*ti)-
t>t;

(5)

Equation (5) can be viewed as a 3D mixture model
where the mixtures are centered at the crime loca-
tions and the number of mixtures is equal to twice
the number of events in the data set.

We note that (4) is not consistent in the sense that
only one component of the process is assumed sta-
tionary. Thus, if the events follow a self-exciting
point process, some events are triggered by previ-
ous events and should not be used to estimate y. In
(Mohler et al., 2011; Zhuang et al., 2002), a prob-
abilistic approach, stochastic declustering, is used in
place of (4). However, we prefer the use of (5) for two
reasons: 1) it makes explicit the connection between
self-exciting point processes and kernel based hotspot
maps and 2) it facilitates a robust, efficient inference
procedure to be detailed in the next section.

3. Marked point process model of homicide

In many instances there may be little difference in
the situation and intent separating an assault with
a deadly weapon and a homicide. The occurrence of
serious violent crimes may provide as much, or more,
information on the rate of homicide as actual homi-
cides. We therefore take the following marked point

process approach to modeling the intensity of homi-
cides. Given categorical marks M, M = 1,..., N,
representing N, crime types believed to be precur-
sory to homicide (with homicide being marked by
M = 1), the intensity of homicide is modeled as,

)\(.’I,‘,flj,t) = M(-T,y) + Zg(x —Tq, Y — y'ut - t'uMz)

t>t;

(6)
For the triggering kernel, g is specified as exponential
in time, Gaussian in space:

g(z,y,t, M) = 0(M)w exp ( — wt)

e (-6 +i2)/2).

X
2mo?

(7)

Here w determines the timescale over which conta-
gion effects decay, o determines the length scale over
which near-repeat risk extends in space, and (M)
determines the average number of events triggered by
an initial event of type M. The choice of exponential
and Gaussian functions allows for weighted sample
mean estimators to be used in the maximization step
of the EM algorithm for parameter estimation. We
allow only the productivity parameter 8(M) to de-
pend on crime type to reduce the overall number of
model parameters. We then use all crime types con-
sidered in this paper to estimate the background rate,

pla,y) = a(é\ﬁ) :

2mn?
t>t; N

X exp (—((:E —z)? + (y — yi)2)/(2772)>7

(8)

where T is the length of the time window of the
dataset up to the present day and (M) determines
the contribution of an event of type M to the back-

ground rate. Overall there are 2 - N, + 3 parameters
to be estimated: (w, o,n,0(M), a(M))

4. Expectation-Maximization algorithm for
parameter estimation

The mixture model specified by Equations (7)-(8)
is fit using an Expectation-Maximization algorithm



(Murphy, 2012; Veen and Schoenberg, 2008; Mohler
et al., 2011). Roughly speaking, each crime in the
data set is assumed to be generated by one of the
mixture kernels. However, this information is unob-
servable, so a probability is assigned to the crime be-
ing generated by each of the mixtures. The algorithm
converges when these probabilities are proportional
to the value of the kernel at the crime space-time
location relative to the sum of all of the kernels at
the crime location (i.e. the intensity \). Below we
state the necessary equations for applying the EM al-
gorithm, see (Murphy, 2012) for a derivation of the
EM algorithm for Gaussian mixtures or (Veen and
Schoenberg, 2008) for a derivation of the EM algo-
rithm for parametric self-exciting point processes.

Let K = Ky + ... + Ky, be the total number of
crimes (of all types) in the dataset and K; be the
number of homicides. Along the lines of (Mohler et
al., 2011), we introduce matrices p;; and pé’j of size
K x K containing the probabilities that event ¢ trig-
gered homicide j through either the triggering kernel
g or the background rate kernel respectively. Thus
we have the E-step equations:

—ti))i X

2mo?

= 0(M;)wexp (—

(2 = 2 + (g — )?

exp (— 1= W ), )
e e I
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Note that p;; > 0 only if t; > t;, as the triggering
kernel is one sided in time. Furthermore, to prevent
point masses from forming during the EM algorithm,
the origin must be deleted from both the trigger-
ing and background rate kernels. Thus p;; = 0 and
p}{j = 0 if events ¢ and j occur at the same location (j

indexes the homicides, which are a subset of events
1=1,...,K).

w(t;

b _
bi; =

Given p;; and p;, the M-step consists of updating

the parameters as follows:
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Given an initial guess for the parameters

<w, o,n,0(M), a(M)), the EM algorithm alternates

between updating the probabilities in Equations (9)-
(10) and then updating the parameters using equa-
tions (11)-(15). In Equation (11) and (14) we in-
cluded temporal boundary correction terms (second
term in the denominator). When the time window
over which estimation occurs is much larger than the
timescale over which near-repeat effects occur, these
terms can be ignored and the equations simplify to
weighted sample mean estimators. When these cor-
rections are included, we find empirically that the
previous guess for w can be used on the right hand
side. Given the large number of parameters, the
EM algorithm has the potential to converge to differ-
ent local minima depending on the initial parameter
value guess. We find empirically that this possibility
is greatly reduced by forcing the spatial bandwidths
to be equal, i.e. ¢ = 7. This is accomplished by re-
moving Equation (13) and summing the numerators
and denominators in (12)-(13). For the data sets used
in this paper, we find that the EM algorithm con-
verges after two hundred iterations. The computa-
tional cost of the EM algorithm is on the order of the
product of the number of iterations, total number of
crimes, and the number of homicides. For the dataset

M;)(T — ti)e(T=t)



used in this study, the computationally complexity is
0O(10% x 10* x 103) and training model parameters
over three years of data for all of Chicago takes on
the order of one hour on a laptop computer. How-
ever, model parameters need only be computed once
every few weeks or months and a hotspot map can
be created in a few seconds. Furthermore, in cloud
predictive policing architectures, model training can
be done in the background in the cloud and hotspot
maps can be precomputed and stored, making the
creation of EM generated hotspot maps appear in-
stantaneous to the user. Another way to reduce the
computational cost is to perform inter-point compu-
tations only on crimes within a certain geographic
distance of each other, for example a cutoff on the
order of 10km (much larger than the spatial band-
width).

5. Application to Chicago gun crime and
homicide

We apply the marked point process methodology
to an open source data set consisting of 78,852 vi-
olent crimes occurring in Chicago, Illinois in the
years 2007 through 2012. In total there are 2,803
homicides (M = 1) and the following gun re-
lated crimes with “handgun” in the description field:
34,637 robberies (M = 2), 13,888 assault (M = 3),
16,187 weapons violations (M = 4), 10,725 bat-
teries (M = 5), and 612 criminal sexual assault
(M = 6). The data can be downloaded from
the website “https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2”.

The application we consider is that of short term
resource allocation. Hotspot policing consists of first
ranking geographic locations in a city by crime counts
or estimates of risk over a historical observation win-
dow, typically several months or years, and then al-
locating patrols or other policing interventions to the
highest ranked geographic areas over an experimental
period, typically several months (Braga, 2001). The
number of hotspots is chosen based upon the amount
of police resources available. Predictive policing in
contrast consists of ranking hotspots on a daily ba-
sis according to estimated risk using both recent and
historical crime incident data, rather than selecting a

fixed set of hotspots for a several month intervention
period.

An empirical accuracy measure of a hotspot rank-
ing method is to measure the amount of crime that
would have fallen within the hotspots flagged for in-
tervention over the experimental period in the ab-
sence of police. In practice this is accomplished
through a retrospective analysis (Bowers et al., 2004;
Mohler et al., 2011), by simulating experimental pe-
riods in historical data and comparing the volume of
crime captured by each ranking method. Methods
can then be compared not only for a fixed number of
hotspots, but for varying numbers of flagged hotspots
as resources may increase or decrease. This metric
is similar to a ROC curve (Gorr, 2009), but differs
because of the introduction of the daily resource con-
straint in place of using a varying alarm threshold
and associated false positive rate on the x-axis.

In particular, we divide Chicago into 150mx 150m
cells that will serve as the potential hotspots to be
ranked each day. We then simulate three year-long
hotspot policing experiments in the years 2010, 2011,
and 2012. For year 2010, we train the marked point
process model parameters over the three year period
2007-2009 and then use these parameters throughout
2010. Each day in 2010, the intensity of the point
process is used to rank the hotspot grid cells across
Chicago. It should be noted that the dynamic com-
ponent of the point process requires as input recent
crimes in the history of the process. Thus to rank
hotspots on day d in 2010 we use all crimes in the
history of the process through day d — 1. We then
calculate the percentage of crime f(x) falling in the
top % of the ranked cells over 2010. We repeat
this process for simulated experimental periods 2011
and 2012, training the model on the prior three years
of data. We display the parameter values in Table
1 and the ROC-like accuracy curve f(x) aggregated
over the three simulated experimental periods 2010,
2011, and 2012 in Figure 1.

The temporal and spatial length scale parameters
in Table 1 have consistent values across the three
model training periods. The spatial length scale pa-
rameter o has an average estimated value of .0014
in the geographic coordinate system, which corre-
sponds to approximately 165m. The estimated time
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Figure 1: Fraction of homicide crime predicted over 2010-2012 versus number of grid cells flagged for intervention each day.
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’07-’09 .1242 .0094 .0279 .0383 .0675 .0000
’08-"10 .0710 .0127 .0446 .0345 .0541 .0000
’09-’11 .0960 .0138 .0232 .0457 .0447 .0257

Table 1: Parameter estimates for mixture model (7)-(8) fit to Chicago gun crime data. Parameters are estimated over three
different training periods: 2007-2009, 2008-2010, and 2009-2011.

scale parameter w for the dynamic component of the
point process corresponds to 41 days. These val-
ues are consistent with time and spatial bandwidths
used in (Bowers et al., 2004; Mohler et al., 2011).
Over the three training periods, the amount of crime
attributed to the dynamic component of the model
varies between 12-15%.

In Table 2, we display the percentage contributions
of each crime type to the overall estimated intensity.
Consistent with past research on leading indicators
(Cohen et al., 2007), non-homicide crime types play
an important role in the prediction of future homi-
cide. Homicide components of the model only ac-

count for 8-13% of the overall intensity. The addition
of leading indicator crime types serves to reduce the
variance in the estimate of the intensity of homicide.

We compare the overall accuracy of the marked
point process in Figure 1 to the accuracy of the var-
ious components of the model. For example, the
chronic hotspot component given by Equation (8) is
analogous to chronic hotspot policing methods (Weis-
burd et al., 2012) that fix hotspots for the entirety of
the experimental period. The dynamic hotspot com-
ponent given by the second term in Equation (6) is
analogous to methods such as Prospective Hotspot-
ting (Bowers et al., 2004) that capture near-repeat



Homicide Robbery Assault Weapons Viol. Battery Sex. Assault
07-09  13% 12% 16% 26% 33% 0%
’08-"10 8% 17% 24% 24% 27% 0%
'09-°11 11% 18% 13% 29% 29% 1%

Table 2: Contributions of different crime types to the estimated intensity of homicide over the three model training periods.

patterns. Because the marked point process is an off-
grid method and the introduction of a grid adds a sec-
ond layer of smoothing, we provide accuracy curves
for both 150mx150m and 75mx75m discretizations
of Chicago. Larger cell sizes obscure the accuracy
of the point process method, whereas small cell sizes,
such as 10m on a side, make hotspot policing imprac-
tical.

In Figure 1, the accuracy of the marked point
process (all components) is the highest, followed by
the chronic hotspot component (all crime types),
chronic component (homicide only), dynamic com-
ponent (homicide only). We believe that the order
in terms of accuracy of the individual model compo-
nents is due to variance reduction provided by adding
more data (though for 150m grid cells the homi-
cide only chronic component performs similarly to
the chronic component with all crime types, as larger
grid cells tend to obscure model performance). All
methods significantly improve upon random predic-
tions. While the dynamic component has the lowest
accuracy, it’s addition to the marked point process
leads to a significant accuracy improvement over the
chronic hotspot map that is fixed for the duration
of the experimental periods. For 150m x 150m cells,
the marked point process corresponds to a 10-20%
accuracy increase over the chronic hotspot map for
1-500 grid cells flagged each day (all methods con-
verge to the same accuracy as the number of flagged
cells increases toward the number of cells in Chicago).
To give some perspective on how many flagged cells
are realistic, in six-month predictive policing experi-
ments in Los Angeles twenty 150mx150m cells were
flagged each day in each of three Los Angeles polic-
ing divisions. As Los Angeles has 21 divisions, this
would correspond to 420 cells flagged each day city

wide for directed patrol. While the geographic size
of Los Angeles is larger than Chicago (1290 km?
to 606 km?), Chicago Police Department has more
sworn officers (12,244 to 10,023). Thus a range of
250-500 150mx150m cells is a realistic number for
a city the size of Chicago. For example, at 400
150m x 150m cells flagged per day over the three year
period, 180 homicides fall within the prediction cells
of the marked point process, compared to 153 for the
chronic hotspot map, a 17% improvement in accu-
racy. Given the high societal cost associated with
homicide and serious gun crime (DeLisi et al., 2010),
estimated to be in the billions of dollars a year in
Chicago, even a few percent decrease in the homicide
rate due to hotspot policing with a more accurate
ranking method would be of significant societal ben-
efit.

6. Conclusion

Hotspot and predictive policing strategies make
possible the efficient distribution of limited policing
resources and help police departments achieve crime
rate reductions. Developments in mathematical and
statistical modeling, high performance computing,
and GPS enabled mobile devices make it possible for
real-time crime forecasts to be at the disposal of of-
ficers in the field. Hotspot maps have their place
in these technological solutions, yet in practice they
often utilize too little of the data police agencies col-
lect or fail to capture short-term changes in risk. In
this article we showed how these methods can be im-
proved by combining short-term and long-term ker-
nel density estimates. We presented a marked point
process model that systematically incorporates mul-
tiple crime types and several years of crime data into



crime hotspot maps. The model can be estimated
efficiently using an EM algorithm and thus can be
easily deployed on a desktop computer or as a cloud
based solution connected to a police agency RMS.
In future work, accuracy might be further im-
proved by incorporating crime attractors into the
density estimate of u. A third kernel g3 could be
centered at each crime attractor location and esti-
mated along with the rest of the model using the EM
algorithm. Another way to improve model perfor-
mance would be to more closely optimize the objec-
tive function. Maximum Likelihood penalizes model
inaccuracy in low and medium risk areas of the city,
whereas only the accuracy in the top ranked hotspots
is of interest to police. Because the objective func-
tion is non-smooth due to the ranking step, learning
to rank algorithms may be well suited for short-term
crime prediction. Finally, retrospective accuracy as-
sessments like the one in this paper should be followed
up by experimental field trials to assess model per-
formance within the context of predictive policing.
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