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Abstract—In corn breeding, hand-measurement of ear height
is a labor-intensive process, thus limiting scalability. Here we
show that it is feasible to automate estimation of the average ear
height of a row of corn in experimental fields used for corn
breeding. For this purpose we use point pattern analysis on
predicted shank-node locations extracted from video captured
on uncalibrated cameras moving through a plot at a fixed height
from the ground (4 feet and 2 feet). First, a convolutional neural
network-based object detection system (YOLOv3) was trained
to detect the ear-stalk connection point and applied to the
collected videos. Detected ear position and time information from
each frame were super-imposed into a point pattern and point-
features were then extracted. Using ridge regression to predict the
average ear height per plot, we achieved 0.772 concordance, 2.989
inches root mean squared error, and 2.263 inches mean absolute
error compared with hand-measured average ear height. Feature
weight importance suggests that one camera may be sufficient
for prediction without significant decrease in accuracy. This deep
learning system can be utilized by mounting cameras onto the
plot combine harvester to collect the necessary videos during
harvest and could be expanded to quantify other phenotype
measurements of interest that are labor-intensive to collect.

Index Terms—precision agriculture, corn ear height, convolu-
tion neural network, yolo

I. INTRODUCTION

Plant breeding [1] as a scientific discipline involves the
utilization of a plant species’ genetic diversity to develop new
plant varieties for farmers, ranchers, foresters and gardeners.
Any given plant breeding program will generate hundreds to
tens of thousands of potential new plants or varieties each year.
In Figure 1, a satellite image of an experimental grid of corn
hybrids at Beck’s is shown. Each grid cell contains a 2 row
plot of corn corresponding to a particular strain and Beck’s
Hybrids runs trials in over 50,000 such plots across the U.S.
each season.

Until recently, these new plants and/or varieties have
been scored or measured visually for important traits such
as plant architecture, disease/insect/abiotic stress tolerance,
flower color, fruit shape, etc. Advancements in sensing tech-
nology and artificial intelligence have created opportunities
to automate much of trait scoring or measurement. In corn
breeding, hand-measurement of ear height is a labor-intensive
process, thus limiting scalability. Corn height is an important
trait, as corn stalks are more likely to bend and/or break if the
corn ear is too high off the ground.

Fig. 1. Satellite image of experimental grid of corn hybrids.

In this paper we outline a prototype system for automating
the measurement of corn ear height in experimental corn
breeding yield trials. An overview of the system is provided
in Figure 2. First, each two row plot corresponds to a different
corn hybrid strain being tested. Video is then taken at a fixed
height through each experimental plot. A “you only look once”
(yolo) convolution neural network [2] is used to detect the
node where the corn ear meets the stalk (shank node). A point
pattern is then constructed by super-imposing the detected
bounding box centers. Analysis of the point pattern is then
employed to estimate the average ear height of experimental
plot. This data can then be combined with genetic information
for each strain to select new hybrids to test the following
season.

The outline of the paper is as follows. In Sub-section I-A
we provide an overview of related work on computer vision
with applications to corn growth and precision agriculture. In
Section II we provide details on our general methodology for
corn ear detection from video and point pattern analysis to
estimate average ear height per experimental plot. In Section
III we provide accuracy results for our methodology and
discuss the important features used in making predictions.
Finally, in Section IV we discuss directions for future work.

A. Related work

Our work presented here is part of a growing body of
literature on computer vision and deep learning methods
for precision agriculture. Corn plant disease detection using



Fig. 2. (Left) Each 2 row plot corresponds to a different corn hybrid strain. (Center) Video through one experimental plot along with yolo-based detection
of node where corn ear meets the stalk. (Right) Point pattern analysis of detected bounding box centers to estimate average ear height of experimental plot.
(Bottom) Average ear height (phenotype) is combined with strain genotype and analyzed to select strains to test next season.

convolution neural networks is recently considered in [3]
and in [4] broken corn detection is developed using yolo.
In [5], moldy corn grain detection is considered and in [6]
the authors develop methods for corn seeding monitoring.
Methods have been developed for the detection of other plants,
from strawberries [7], apples [8] and tomatoes [9] to weeds
[10].

In other recent work, video from UAVs and satellite imagery
are used to measure corn plant height [11] and crop yield [12],
however the resolution in these works is much coarser than
what is needed for corn breeding. Other research has focused
on measuring corn height in indoor laboratory settings [13]. To
our knowledge, this is the first work to develop an automated
system for measuring ear height within the context of corn
breeding at scale within a 2 inch margin of error.

II. METHODS

A. Shank-node detection

As discussed in the previous section, corn ear height is an
important characteristic to measure in corn breeding. While
one approach would be to detect the corn ear in each frame of
the video, this leads to errors as the orientation of the ear may
not be fixed (some ears are upright, whereas others may face
down). We therefore detect the node where the shank meets
the stalk (see Figure 3). For this purpose we use a yolo-v3
convolution neural network [14]. Unlike CNN classification
networks, yolo solves a regression problem for predicting both
class probabilities (binary class indicating shank-node) and
bounding box locations.

The yolo-v3 architecture includes 106 convolution layers.
The layers predominantly utilize 3x3 filters and the network
includes residual skip connections to avoid the vanishing
gradient issue in very deep networks. The network performs
object detection at three scales by down-sampling the input
image by a factor of 8, 16, and 32. We also tested the use of
binary classification CNN based models applied to sub-images

to detect shank-nodes, however yolo-v3 provided superior
accuracy with reduced computational cost.

We train yolo-v3 on 413 annotated images (245 4′-camera
and 168 2′-camera). The training converges after 6,000 iter-
ations, rendering mAP@0.5 ∼ 77.34%. Using a confidence
threshold at 0.25, we obtained a training precision ∼ 0.78,
recall ∼ 0.75, and F1-score ∼ 0.77. For detection, we adopted
a different confidence threshold at 0.1, for capturing more
objects.

B. Average ear height estimation

Mapping each bounding box and confidence directly to the
video’s labeled height is one possible approach to estimating
average ear height, but careful sample weighting to normalize
for differing counts of bounding boxes per video would be
needed. Instead, we aimed to characterize each video as
a whole. Each bounding box was assigned a weight equal
to the confidence (linear mapping to 0-1 weight) times the
hann window, w(t) = .5(1 − cos(2πt)), function based on
the relative video frame index t (0 ≤ t ≤ 1, to decrease
contribution of frames from beginning and end of video).

Next we super-impose the bounding-box centers outputted
by yolo across the video and analyze the resulting point pattern
(shown in Figure 5). Given each experimental plot consists of
2 rows and the camera passed through the middle, each side of
the super-imposed 1920x1080 pixel frames produces a cluster
around a line positioned at the shank-nodes. We derive two
types of features:

1) The x, y centers of each bounding box (pixel coordinates)
were calculated and grouped by video and left/right side of
video (center determined by x = 1920/2). The x coordinate
of points (horizontal image pixel index) from the right side
was mirrored around the center to standardize points to the
”left” side coordinate system. Each group of points were fit
with linear regression. Slope, intercept, and covariances were
taken as features.



Fig. 3. Yolo corn shank node detection. Video available at https://www.youtube.com/watch?v=6xZgesxGD9k

2) The x, y pixel coordinate bounding box centers were
converted to polar coordinates using (960,270) and (960,540)
as origins for camera heights 2 ft and 4 ft, respectively.
These points were chosen by eye based on the center point
distribution and could represent the horizon vanishing point.
The x coordinate was again mirrored from the right side. The
center of mass (using confidence weight) of the polar angle
was calculated for the left and right sides, and the weights
were also binned every 15 degrees using a histogram over
the polar angle. After removing bins with 0 count across all
videos, this gave 52 features.

We then use supervised learning based on these features to
map the above statistics of the point pattern to the average
ear height of each experimental plot (currently measured by
hand at Beck’s Hybrids across over 50,000 experimental plots
each season. We fit a number of different sklearn [15] models
including linear, lasso and ridge regression, KNN, XGboost
[16] and random forest.

III. RESULTS

In Table I we compare the root mean square deviation
(RMSD), mean absolute error (MAE) and correlation between
model predicted height and human labeled height on a held-out
validation set. The best performing model is ridge regression
with a mean absolute error of 2.263 inches.

In Figure 4 we plot the range of errors for each of the
competing models. We find that 50% of predictions generally
fall within 2.5 inches of absolute error and 90% fall within 5
inches. We note that the human labels are generated by taking
several sampled height measurements in each plot rather than
measuring each plant individually, so part of the error may be
due to label noise.

In Table II we display the features used in the supervised
models along with their correlations with average ear height.
Here we observe that the 4ft camera features performed better
than the 2ft camera, which may be due to the stage of growth
(near harvest) where the height of the camera was closer to the
height of the ears of corn. For detection earlier in the season
the 2ft camera may yield better results. Based on random forest
importance ranking, ultimately covariance and polar histogram

Fig. 4. Box and whisker plot of mean absolute error for competing models
predicting average ear height per video.

features were removed, and using slope, intercept, and angle
information resulted in the best model performance.

Method RMSD MAE CORR
Bayesian Ridge Regression 3.115 2.320 0.760
Linear Regression 3.064 2.394 0.762
Ridge Regression 2.989 2.263 0.772
Lasso Regression 3.007 2.286 0.769
KNN 4.960 3.921 0.368
XGBoost 3.671 2.782 0.622
Random Forests 3.271 2.540 0.743

TABLE I
MODEL ACCURACY FOR HEIGHT (INCHES) PREDICTION ON VALIDATION

SET.

IV. FUTURE WORK

Our results indicate that automated corn ear height measure-
ment is possible for large scale corn breeding within an error
of 2 inches per experimental plot. Measurements can be taken
using a camera fixed to the harvester or sprayer, or potentially
via unmanned vehicles or drones. The framework used here
may be applied to measuring other important traits such as
yield per plot, percentage of broken stalks or ears on the
ground, root lodging, stalk lodging, stay-green and intactness.
Other sensors, such as lidar, may also be used in place of
the video camera and may provide more accurate estimates
in some situations. The methodology we outlined here is also



Fig. 5. Point pattern captured by 4′ camera (left) and 2′ camera (right), in the same lane. The markers are placed at the bounding box centers. Orange :
points on the left half; Blue: points on the right half.

Feature Kendall tau Pearson r
4ft left intercept -0.580 -0.721
4ft right polar angle 0.543 0.698
4ft right intercept -0.518 -0.627
4ft left polar angle 0.512 0.683
4ft left slope 0.442 0.536
2ft right polar angle 0.439 0.625
2ft left polar angle 0.406 0.581
2ft right intercept -0.369 -0.545
4ft right slope 0.304 0.431
2ft left intercept -0.218 -0.384
2ft left slope -0.072 0.000
2ft right slope 0.072 0.075

TABLE II
POINT PATTERN FEATURES AND CORRELATION WITH AVERAGE EAR

HEIGHT.

not restricted to corn breeding and can be used for measuring
important traits in other precision agriculture applications.

Further improvements to the model are also possible. Com-
bining corresponding features from the left and mirrored right
side per frame did not improve performance. It is possible
that there was an overall tilt to the camera and left/right
polar angles could be used to rotate the reference frame to
enforce symmetry. Training to detect horizon or vanishing
point could help with this as well, and be used to model
a dynamic origin point for the polar coordinate method.
Simple video stabilization was implemented but did not yield
accuracy improvements. Additionally, if object tracking can be
performed on bounding box positions over time, these paths
could also be used to address one or both of the above issues.

Modeling on bounding box data directly was done with hard
cutoffs for confidence and frame number. Since the model
is essentially a series of two regressions, adapting a similar
weighting scheme and normalizing by the bounding box count
per video might yield improved results.
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