Explaining crime diversity with Google street view Samira Khorshidi * Jeremy Carter[†] George Mohler [‡] George Tita[§] October 1, 2020 #### Abstract ### Objectives Crime diversity is a measure of the variety of criminal offenses in a local environment, similar to ecological diversity. While crime diversity distributions have been explained via neutral models, to date the environmental and social mechanisms behind crime diversity have not been investigated. Building on recent work demonstrating that crime rates can be inferred from street level imagery with neural network computer vision models, in this paper we consider the task of inferring crime diversity through street level imagery. ### Methods We use the Google Vision API, a deep learning image tagging service, to extract objects from sampled Google Street View (GSV) images in each census block of Los Angeles. For each census block we then compute indices for i) object diversity, ii) diversity related to commonly employed census variables, and iii) crime diversity from reports provided by the Los Angeles Police Department. We then build $^{^{\}ast}$ Computer and Information Science, Indiana University - Purdue University Indianapolis $^{^\}dagger \text{O'Neill}$ School of Public and Environmental Affairs, Indiana University - Purdue University Indianapolis $^{^\}ddagger Computer$ and Information Science, Indiana University - Purdue University Indianapolis, gmohler@iupui.edu [§]University of California Irvine ordinary least squares and geographically weighted regression models to explain crime diversity as a function of environmental diversity, population diversity, and population size. ### Results We show that crime diversity arises via a combination of environmental diversity (as measured through street view object diversity), household diversity (as measured through the census), and population size. Population size and area of the census block both lend credence to the neutral model proposed by Brantingham for crime diversity. However, environmental and demographic diversity combined play an equally important role in explaining variation in crime diversity. #### Conclusions Our study has two primary implications for research on crime and place. First, Google Street View (via the Google Vision API) can provide important, cost-effective empirical insights to best understand distinct geographic environments of crime. Second, environmental diversity, as measured by image tagging in GSV, was observed to be more predictive of crime diversity (variety of crime types) than commonly used census measures. ### 1 Introduction Environmental and opportunity theories of crime emphasize the role of place in offender decision-making. Criminals interpret both general and specific cues that facilitate or hinder offending in a given place. From a measurement perspective, several environmental characteristics may be more pronounced and easily quantifiable, such as lighting, liquor establishments, or roadway accessibility. More challenging to measure are the subtle environmental cues. Signs of physical incivilities, such as graffiti or trash on sidewalks, opportunities such as parked vehicles, and possible guardians in the form of security systems, fences, or pedestrian traffic are each difficult to capture in examination of crime occurrence. Moreover, types of offending cues and their associated onset for criminality remain elusive to parse out in empirical research. To this end, the present study examines crime diversity as a measure of interest at place. Crime diversity [1] refers to the variety of crimes that occur in a spatial area of observation. Environmental criminology [2] posits that the crime occurrence in a given area is related to the natural and built environment. Thus, environmental diversity (variety of environmental characteristics) should give way to a range of criminal offending. Brantingham introduces crime diversity [1] through the lens of a neutral model, where crime occurrence is assumed random and independent, leading to a law-like dependence of crime diversity as a function of the area under observation. This is to say that crime events share no relationship (for example, residential burglary and drug offending in the same place may not be related) and specific offending cues are likely randomly distributed across geographies. Thus, observations of crime diversity (and to a similar extent, crime patterns) are a derivative of environmental cues present across a geography. Our study seeks to make two primary contributions to the crime at place literature broadly, and more specifically to the call of this special issue in identifying innovative methods and data to progress this body of literature. First, we introduce and demonstrate Google Vision API - a deep learning API that tags features contained within Google Street View (GSV) images. Though previous studies have leveraged GSV data to explore crime at place [3], these examinations have relied upon qualitative coding procedures consistent with systematic social observation. Such processes are time consuming and subject to inter-rater reliability issues. As we discuss in our limitations below, GSV data via the Google Vision API are not without limitations as well, though they present a unique and innovative source of rich place-based data to quantify characteristics of urban environments. These data hold substantive promise for scholars seeking to employ various methods and more large-scale assessments of environmental and opportunity theories of crime. Second, we build upon the emerging notion of crime diversity through an alternative approach using geographically weighted regression to predict crime diversity as a function of environmental diversity, social diversity, demographics, and population size. We leverage a unique data collection tool, the Google Vision API from Google Street View (GSV) to capture image content and quantify place-based characteristics at the street-level. In doing so we are able to explain a majority of the variation of crime diversity and estimate the effects of each of these explanatory variables. Our results indicate that population size (representative of Brantingham's neutral model), environmental diversity (as measured via Google street view images), household diversity, and median household income (which is negatively correlated) are the most important predictors of crime diversity. For diagnostic purposes of demonstrating the utility of GSV for crime at place research, we conduct separate analyses of environmental diversity as predictors of both violent crime and property crime. Results mirror those of our primary crime diversity models. # 2 Theoretical Underpinning for the Utility of Google Street View Explanations of crime at place hinge on several theoretical perspectives; each reliant on different sources of data and scales of measurement to appropriately test underlying assumptions. The discussion of theoretical frameworks that follows not only underpins the importance of place in studies of crime, but also contextualizes why Google Street View and Google Vision may be functional tools for crime and place research. As we near the 100th anniversary of the pioneering work of the Chicago School [4–7], much of what we know about crime at places materialized from social disorganization that links crime with traits of neighborhoods and their residents [8]. Emerging from this ecological perspective has been the growing recognition that places are quite nuanced in their capacity for crime. Indeed, much exploration about the causes and correlates of crime have shifted from the macro- and meso-levels to micro-levels of place [9]. Opportunity theories emphasize the spatiotemporal dimensions of crime; more specifically, how offenders interpret criminal opportunities and identify crime targets in the context of the social and physical environment [10]. Whether examining disorder or serious crimes, routine actives theory, environmental criminology and other placed-based theories have shifted the focus from "neighborhoods" to street segments or particular addresses. Rational choice theory contends that offenders engage in a rudimentary decision-making process that weighs perceived costs and benefits of crime commission [11]. Through a rather semi-conscious process, offenders evaluate criminal opportunities in the context of their environment. Offenders weigh desired rewards, likelihood of success, and likelihood of apprehension in this rational process. Thus, environmental cues in a given geography may trigger a rational decision to commit crime whereas others may have the opposite effect and result in crime deterrence. Situational crime prevention is built upon this rational foundation and leverages the reality that offenders will interpret their environment and criminal opportunity [12]. For example, street lighting and presence of closed-circuit television signal to offenders an increased difficulty of committing an offense and likelihood of apprehension [13]. Conversely, the presence of graffiti and availability of surface objects to vandalize in the same location that also lacks effective mechanisms to control offending send signals of opportunity to offenders motivated by this crime type [14]. Routine activity theory complements the rational choice perspective of offending. Under the routine activity framework, offenders become aware of opportunities to offend throughout their daily routines because of the spatio-temporal convergence of common situational elements necessary for a criminal offense [15]. The presence of both a motivated offender and a suitable target, in the absence of a capable guardian, are likely to result in a criminal offense. Specific targets must also be available for certain crime types. Vehicles must be present for motor vehicle theft or residential homes for residential burglary. As these crime ingredients must converge in space and time
for crime to occur, this presents opportunities for police and scholars to isolate specific dimensions of crime to identify primary catalysts of offending. A problem-oriented policing strategy known as the problem analvsis crime triangle [16] focuses on these elements of crime and integrates an additional layer referred to as controllers who can exert crime control influence; which include managers of places, guardians of targets, and handlers of offenders. This crime analysis method enables criminal events to be examined in context of these elements to inform effective interventions. Given the empirical reality that crime concentrates in micro-places [17], and that places offer more tangible crime prevention benefits as compared to individual offenders [10], a focus on the place ingredient of crime has become increasingly fruitful. For example, a single street segment may exhibit high volumes of multiple crime types. Under a routine activity and problem analysis approach, multiple targets and offenders may be identified however the place dimension remains stable across offenders and criminal events. Further analyses may reveal that this street segment has a troublesome apartment complex, a bar with repeat calls for service, and poor lighting conditions. An effective path forward would then be to work with place managers as the controllers of this criminogenic area to generate interventions. Crime pattern theory, or environmental criminology, leverages propositions from routine activity and rational choice theories to explain the spatiotemporal distribution of crime across various places. Crime pattern theorists emphasize the characteristics of places to explain crime occurrence. Here, the primary catalyst of crime can be attributed to the built environment. Risky facilities, roadway access, and geographic proximity of suitable targets relative to an offenders residence (to name a few) are present in certain areas that will generate more offending opportunities than places absent these characteristics [18]. Offenders become aware of criminal opportuni- ties through interpersonal communications [19] or observations during their daily routines [20]. Characteristics of the environment heavily influence the decision-making process to offend. For example, and offender may learn of a neighborhood where homes are frequently unoccupied during certain times of day, is easily accessed by major street thoroughfares, and lack home security systems. It is also possible that an offender will personally observe these same characteristics while walking home from work, and make note of this opportunity to offend at a later time. Routine activities and environmental characteristics coalesce to form what the Brantinghams [2, 21] coined as the environmental backcloth of places. Such a backcloth is comprised of features that attract and/or generate crime opportunities and rely upon effective place managers [22]. Recent advancements in crime forecasting have demonstrated the importance of the environmental backcloth, or risk factors, that identify highly criminogenic places [23]. Onset of criminal offending at places may be described differently from a crime pattern or routine activity perspective. Routine activity theorists contend crime is a function of people in a given place. Controllers persons who are the place managers, guardians, and handlers are believed to be effective in areas low in crime, while the opposite is true in high crime places. For crime pattern theorists, crime occurrence is a function of how criminal opportunities are identified and accessed by offenders [24] placing a dominant role on environmental factors of a given place to explain offending. In a study of Chicago hot spots, drug dealers and robbers appeared to focus their offending in areas with specific business types, such as check-cashing and liquor stores. Subsequent interviews with drug dealers and robbers as part of this same study revealed offenders strategically selected places with these specific businesses [25]. Thus from a crime pattern perspective, offenders were drawn to these places in Chicago due to specific environmental cues. Several studies have demonstrated the importance of environment-type in explanations of crime [26] such as the proportion of residential, commercial, and industrial buildings within geographic areas highly correlates with property crime [27] and violent crime [28] while physical urban layouts, such as streets and building placement, significantly influence overall patterns of crime [29]. It is worth repeating that these characteristics of places reflect environmental cues interpreted by offenders through a rational decision-making process [2, 10]. Akin to the study of specialized offending at the individual-level [30, 31], criminologists have sought to better understand specific mechanisms that facilitate this environment-crime relationship. This becomes conceptually and methodologically challenging as environmental cues may be general and/or specific to crime [32]. General cues are requisite for crime occurrence [29] while specific cues reflect facilitating characteristics for particular types of crime [33]. Though empirical assessments that point to tangible answers to the general versus specific correlates of crime are sparse, research suggests both mechanisms are salient to explaining crime at place [32,34]. # 3 Variation of Offending Environment Here it is important to note the different layers of environment. From a built environment perspective, crime pattern theory [29] suggests that street layout and building types, for example, define an environment and can help explain crime occurrence. A more particular, and difficult to quantify, aspect of environment are the more-subtle attributes of physical places. Things such as graffiti on buildings, trash or debris, pedestrian traffic, and presence of vehicles can be signals of disorder or opportunity. Such attributes can distinguish environmental differences among otherwise similar places as determined by traditional measures of environment. For example, two areas may exhibit similar building composition for land use and street layout, however one may have no physical signs of disorder while the other is rife with graffiti, litter, and abandoned vehicles. It is reasonable to assume the environment challenged with physical disorder would exhibit different crime patterns. This notion is consistent with broken windows theory - that physical incivilities signal to offenders an open environment for crime and disorder [35]. Controlled experiments have shown that graffiti on walls increases the propensity of individuals to litter on the same street [36], and that geographic hot spots of crime exhibit similarly high concentrations of disorder [17]. It is also the case that specific opportunities or targets must be present for specific crime types, yet similar targets and opportunities are not evenly victimized. Why some houses are burgled and others are not in the same neighborhood is difficult to explain [37–40], as is higher burglary risk levels for homes located along the same side of the street in close geographic proximity to a previously victimized homes [41, 42]. To date, much of the spatiotemporal modeling of crime at place has leaned upon community and structural indicators as valid empirical estimates that capture more granular characteristics of environments are more difficult to operationalize and quantify [43]. Valid, reliable, and cost-effective means of quantifying the envi- ronmental backcloth of urban areas in which crime occurs at place are sorely needed to progress towards more effective crime prevention programs [44]. In short, opportunity and environmental perspectives of offending emphasize the dominant role of place in explaining crime. Rational choice contends criminal events are not ubiquitous across locations as offending is a product of conscious decision-making processes informed by an evaluation of environmental and situational factors. Routine activity theory asserts the volume of crime at a given location will vary dependent upon the capacity of a location to contain motivated offenders, capable guardians, place managers, handlers, and/or suitable targets. Relatedly, crime pattern theorist posit the distribution of crime events across space and time is a byproduct of a rational decision-making process wherein offenders identify and access criminal opportunities based on observable environmental cues. Moreover, disorder in the form of physical incivilities are spatially correlated with more serious crime in micro-places. These theories, each in their own way, point to the importance of understanding specific environmental cues of offending that are present or absent at places and that the distribution of such cues is likely a function of the geographic footprint. In his study of crime concentration in Boston across varying spatial scales, OBrien [45] lends further support to the function between geographic size and crime occurrence and acknowledges the lack of attention given to explaining this offending cues-crime diversity issue: He notes that "some places have more crime and disorder simply by virtue of having more places where such events can occur. This should not be an entirely surprising finding, but it highlights the fact that this consideration has so rarely been addressed in the criminology of place literature" [45] (p.23). Despite rapid growth of crime and place research, such a void in this literature is largely a function of methodological challenges. Indeed, a consistent theme across environmental criminology and crime at place literatures is the lingering question of how can we better measure environment? To date, scholars have largely leveraged administrative data sources (such as census, 311 calls, and commercial databases) across various spatial scales to test the relationship between community factors and crime. While
metrics such as land use and business types have been employed to examine the built environment to quantify risk of crime [23, 46], they likely mask unique characteristics of offending environments only observable at the street level. Groff and colleagues [47] studied street to street crime trends to identify variability in Seattle. Their primary finding was that crime patterns differed across several adjacent street segments, and many street segments had significantly different crime patterns than their surrounding area. They provide a robust discussion of the community and environmental theories at play in micro places in discussing their results, largely acknowledging that the current state of science in crime and place research is unable to pinpoint direct environmental correlates of crime at localized scales. Groff et al. [47] (p.26) urge scholars to pursue innovative ways to measure local environments: "Only by conducting research that uses street blocks as the unit of analysis and by thoroughly describing their characteristics will we be able to shed additional light on these questions. Future work should utilize prospective data collection to take advantage of the more robust information systems available today". In a step to meet this call, the present study draws upon Google Vision API, a deep learning image tagging service, to extract objects from randomly sampled Google Street View images in each census block of Los Angeles. # 4 Crime Diversity, Offending, and Environment Image tagging via Google Street View holds promise to identify a broad range of environmental characteristics, which in turn may signal offending cues related to a broad range of offenses in a given geography. Thus, our decision to focus on crime diversity is motivated by the desire to capture both general and specific cues of offending as they relate to several offense types. Crime diversity reflects the variation in observed crime types in a given geography. In the context of the aforementioned theories of crime, community schools of thought and general offending cues from environmental perspectives would suggest high crime diversity be observed in places. As social disorganization, concentrated disadvantage, and general offending cues are present, so too would all types of crime. Conversely, if specific offending cues are present, and/or the built environment lends itself to certain offenses, then there should be less crime diversity as certain crime types contingent upon the environment will dominate the area. For example, residential burglary cannot occur in a commercial area or park in the absence of residential housing and vehicles must be present for car thefts to occur. Crime diversity is salient to crime at place lines of inquiry, and subse- quent police interventions. Areas rich in crime diversity suggest the presence of variable crime generators and attractors. Such places are also likely to exhibit ineffective guardians, place managers, and handlers [48]. Places plagued by an array of crime types pose difficult challenges to police. Place-based policing strategies tailored to combat multiple crime types are less effective than tailored approaches [12], investigatory [49] and proactive [50] resources are likely to be strained by multiple crimes, and community dynamics to institute social controls are likely to be less effective [27]. As noted by Brantingham [1], both the volume of crime and array of crime types are equally important to communities. Brantingham [1], drawing from theories of ecology, conceptualized crime diversity as crime richness and crime evenness. The former refers to the simple occurrence of different crime types within a sample, while the latter speaks to the distribution frequency of observed crime types. Using crime classifications from Los Angeles, CA, he examines crime diversity as a function of geographic scale. His study adopted a neutral model in that crime types were assumed to be independently distributed across space, when conditioned on the number of crimes in an area. Under the neutral model, the distribution of crime diversity as a function of the area of observation and/or local crime rate is explained by a multinomial distribution of crime types conditionally independent of a locally dependent size parameter. In short, he found that larger geographic areas demonstrated higher crime richness (crime diversity) as predicted by the neutral model. Scholars are most likely to take aim at Brantinghams [1] central finding, that crime is a function of random processes as opposed to a linkage with certain offending cues present in a geography. Such a proposition challenges widely held beliefs among environmental criminologists and the dependencies between offenders and their environment. However, the neutral model simply predicts what the distribution and variation of crime diversity should be as a function of geographic area; the neutral model does not attempt to explain the observed variation. Lentz [51] replicated Brantinghams [1] study using publicly available data from Los Angeles in addition to data from St. Louis. His findings affirmed Brantinghams original observations, that crime diversity was indeed a function of geographic size. However, Lentz [51] offers two inter-related observations that are central to the present study. First, he argued a more appropriate geographic sampling method would be to randomly select geographies from across a city (as opposed to random sampling by crime incident as was done by Brantingham). Lentz [51] observed that levels of crime diversity varied more dramatically using a random sample of places, suggesting areas of a given city are likely to experience much different crime diversity dependent upon unique characteristics of the area sampled. Despite this observed variation of crime diversity, the primary finding held true that crime diversity exhibits a non-linear relationship with geographic size. Second, and related to the previous observation, Lentz [51] suggests the randomness of neutral models may mask the reality that crime events are not random, but specific environmental offending cues are random. Taken together, these observations suggest the importance of capturing more subtle attributes of geographies - the aforementioned indicators of guardians, physical incivilities, and opportunity that may, or may not, be present across geographies. Both studies suggest future research should attempt to identify methodological approaches to better understand the complex measurement issue of crime diversity and general versus specific cues of offending. These issues speak to the present study as both authors explain the need for a more contextual assessment of city environments that help to explain crime diversity. # 5 Google Street View as a Valid Source of Place-Based Data The use of innovative technologies as sources of data has slowly emerged in criminological research. Recently, scholars have conducted systematic social observation-style analyses leveraging video footage from CCTV cameras [52] and police body cameras [53]. Despite rather well-documented uses in the areas of geographic and other social sciences, criminology has been slow to utilize Google Street View (GSV) as a valid source of data. Vandeviver [54] provides a review of GSV applications to criminological research, noting most of which focus on GSV as a supplemental tool for understanding offending choices and environmental composition as opposed to a primary source of data collection. This is somewhat surprising given the exponential growth of interest in place-based crime research and reliance upon innovative mapping techniques [55]. Use of GSV has been proven to demonstrate measurement reliability [56–58] and be a cost-effective and less time-intensive [59–62] method to visually audit geographic places of interest. A few notable contributions are pertinent to the present study. To esti- mate the risk of residential burglary in The Hague, Langton and Steenbeek [3] merged burglary addresses from police with image-coded data of these same addresses using Google Street View to identify environmental traits of homes and their immediate surroundings. Their findings revealed that burglarized homes were more accessible due to a lack of gates, fences, and proximity to open or public areas. Homes that were more secluded from public view provided less surveillance and increased burglary likelihood. Such environmental factors that are indeed captured using the GSV Vision API data tool. Odgers and colleagues [57] used a virtual systematic social observation (SSO) of 2,232 youth facing environmental risk across 1,012 neighborhoods in England and Wales. Their study coded physical disorder, physical decay, danger, green space, and child-safe streets. Observed SSO metrics were cross-referenced with census and study participant self-report data. In summary, their study concluded that "Findings from this study support the use of Google Street View as a reliable and cost effective tool for gathering information about local neighborhoods. Acceptable levels of inter-rater agreement were documented for the majority of the virtual-SSO items and scales, providing evidence that both negative and positive neighborhood features can be reliably coded within a virtual context" [57] (p.1015). Similarly, He and colleagues [63] leveraged GSV to code physical disorder, pride in land ownership, and defensible space within each census block group of Columbus, OH to predict violent crime. Their findings are consistent with previous research using available census data at the block-group level, while noting that GSV serves as a unique source of quantitative data to capture the nuances of built environments and neighborhood characteristics that best inform crime correlates at the street-level. Perhaps Robert Sampson [64] best captured this approach in his 2012 presidential address to the American Society of Criminology.
When discussing how important visual assessments of the social environment are to understanding a variety of crime correlates, he draws specific attention to GSV as a legitimate source of environmental data: "Google Street View can be and is being used systematically to code a variety of urban street scenes, right down to the level of specific places" [64] (p.9). ## 6 Methodology Our overall methodology follows the work by [65], where homicide rate variation is explained through neighborhood diversity. Graif and Sampson model homicide rates as a function of language diversity (as measured via a diversity index) and other spatial covariates. In that work a geographically weighted regression [66] is compared to ordinary least squares regression, with the former yielding improved goodness of fit. Here our goal is to explain the variation in crime diversity across geographic areas as a function of environmental diversity measured through Google street view, along with other spatial demographic covariates and derived diversity measures. For this purpose we use the Shannon Diversity Index [67], which is used in ecology to measure the uncertainty in predicting the species of an individual randomly drawn from the population in a given spatial area. Let i = 1, ..., R index each of R crime types and let $p_{i,k}$ denote the proportion of crime in spatial unit k given by crime type i. The Shannon Diversity Index H_k in spatial area k is given by, $$H_k = -\sum_{i=1}^R p_{i,k} \ln p_{i,k}.$$ (1) Here H_k is maximized (greatest diversity) if all crime types are equally represented, $p_{i,k} = 1/R$, and is minimized (least diversity) if only one crime type is observed, $p_{i,k} = 1$ for some i. Each term in Equation 1 is defined as zero if $p_{i,k} = 0$. To measure environmental diversity, we again use Equation 1 to estimate the diversity of objects in street view images. We first use the Google street view API to obtain the street view image at each node in the street network of Los Angeles containing at least one crime. We next use the Google Vision API to generate a list of objects present in the image. The Google Vision API utilizes a deep neural network for image object detection and returns a list of objects along with confidence scores (see Figure 1). With this list of objects for each image in a census block, we then compute the Shannon diversity for image objects in the census block aggregated across all images in the census block. In Figure 2, we provide examples of images in a high and low diversity census block along with the Shannon diversity index for crime and image object diversity. | Property | 88% | |------------------|-----| | Residential Area | 86% | | Tree | 78% | | Neighbourhood | 74% | | Architecture | 73% | | Home | 72% | | House | 68% | | Building | 66% | | Road | 65% | | Real Estate | 65% | | Street | 65% | | City | 60% | | Landscape | 59% | | Thoroughfare | 58% | | Asphalt | 57% | | Urban Design | 56% | | Intersection | 55% | | Road Trip | 52% | | | | Figure 1: Example street view image and objects detected by the Google Vision API (along with object confidence score). We next estimate a geographically weighted regression model using the R package "spgwr" [68]. Letting y_k be the crime diversity in census block k, then we model crime diversity as, $$y_k = a_{k,0} + \sum_{j=1}^{M} a_{k,j} x_{k,j} + \epsilon_k$$ (2) where $x_{k,j}$ is the value of the jth explanatory variable in census block k and $a_{k,j}$ is a spatially varying coefficient. The coefficient vector at location k is estimated via the equation, $$\vec{a}_k = (\vec{x}^t W_k \vec{x})^{-1} \vec{x}^t W_k \vec{y}. \tag{3}$$ Here W_k is a diagonal matrix containing the weights of other census blocks relative to block k using a Gaussian kernel with bandwidth selected via cross-validation. When W_k is given by the identity matrix then gwr reduces to ordinary least squares regression, however as the bandwidth of the Gaussian kernel reduces in size then the coefficients become more localized in space. We also fit a a spatial simultaneous autoregressive error model using the R function errorsarlm, but it did not outperform the gwr in terms of AIC so we did not include it in the paper. Because our goal is explaining crime diversity, rather than predictive accuracy, we include all relevant predictors to establish error bars and significance of the coefficients. ### 7 Data We use three types of data in this study: 1) crime incident data for Los Angeles in 2013, 2) Google street view object counts in census blocks and 3) census data defined at the block group level. In Table 1 we display the crime categories present in the Los Angeles crime data set (those containing at least 50 incidents) and in Table 2 we state the mean and standard deviation of the variables across census blocks. The list includes both property and violent crime, ranging in severity from misdemeanors to felonies. As discussed in the previous section, we obtained Google street view images using the Google street view API at locations on the street network containing at least one crime incident in the Los Angeles data set. This resulted in 123,912 unique images. We then used the Google Vision API to extract a list of objects detected in each image. Finally we aggregated these objects at the census block group level in order to compute a Google Street View (GSV) object diversity index. Figure 2: Top row: high diversity census block with object diversity index of 0.79 and crime diversity index of 2.58. The area contains a variety of housing, commercial buildings, and vehicle types and subsequently contains a variety of property and violent crime. Bottom row: low diversity industrial census block with object diversity index of 0.62 and crime diversity index of 0.69. The area consists of mostly commercial buildings and the only crimes reported in the time period of observation were fraud and vandalism. The census variables used can be found in Tables 5 to 10 in the results section. We analyze a wide range of theoretically relevant census variables commonly used to explain crime variation, though we limit the number of predictors to less than 1% of the total number of observations to prevent over-fitting [69]. These measures are largely drawn from the social disorganization and concentrated disadvantage perspectives [8]. Though social disorganization as a salient community explanation of crime is generally agreed upon [70], specific measures used to operationalize this construct are less than prescriptive [71, 72]. Which specific measures pertaining to race, ethnicity, poverty, housing population and type, education, age, sex, and unemployment should be indexed to reflect social disorganization varies across studies and available data samples. To best accommodate the range of census variables most commonly used to capture social disorganization, we err on the side of overly specified models. We believe this approach is best suited to demonstrate the explanatory power of GSV as compared to commonly used census measures, as well as several census-based demographic diversity indices (similar to the work in [65]). For all diversity indices we use the Shannon Index found in the above methodology section. We include language heterogeneity or "diversity" as an extension of social disorganization and collective efficacy as differential opportunity theory [73] posits social ties among residents in areas of concentrated disadvantage affects crime occurrence and crime type as well as community mechanisms of social control [74] - an interaction observed in Chicago neighborhoods among social networks and crime in communities [75]. This approach is also consistent with previous research that demonstrates the importance of cultural disorganization within socially disorganized communities [76]. In the following analysis, we restrict our attention to census block groups with at least 50 crime incidents in the observation period. This is to remove blocks with low volume of crimes where the diversity index will have high variance (and also the index is biased towards lower diversity). We used the bootstrap to simulate blocks with different crime volumes (and same diversity index) to empirically set the threshold at 50. In Figure 3 we plot the Shannon diversity index vs. number of crimes for two census block groups for the bootstrap simulations. Figure 3: Shannon diversity index vs. number of crimes for two census block groups (box intervals determined using bootstrap resampling). ### 8 Results Our goal is to explain variation in crime diversity, as measured via the Shannon Index, as a function of street view diversity and demographic features of the environment (and derived diversity measures). For this purpose we use ordinary least squares regression and geographically weighted regression and, in Table 4, we present the R^2 and AIC values of each model. For each type of regression we model all crime diversity (all crimes aggregated), property crime diversity and violent crime diversity. In Table 5, we present the OLS coefficients for all crime diversity along with their standard errors and p-values. The explanatory variable with the largest estimated coefficient is population; Google Street View diversity has the third largest coefficient in magnitude (.172, 95% CI: [.149, .195]) behind population and median income. All variables have been standardized to mean zero and variance 1, so population having a coefficient of .46 means that the crime diversity index is predicted to increase by that amount when the population size increases by one standard deviation. Other statistically significant predictors include median household income, household heterogeneity (diversity), and area of the census block. Population size and area of the census block both lend credence to the neutral model proposed by Brantingham for crime diversity [1]. However, environmental and demographic diversity combined
play an equally important role in explaining variation in crime diversity. Median household income is also an important, negatively correlated predictor, indicating that lower income levels in a geographic area lead to higher crime diversity. However, such a relationship could arise simply from lower income levels being correlated with higher crime rates, which the neutral model predicts to be associated with higher crime diversity. The geographically weighted regression has a similar set of important explanatory variables in the case of all crime diversity compared to the OLS model. Population again has the largest global coefficient, with income, GSV diversity, household diversity, median age all with large, statistically significant global coefficients. In Tables 5-10 we display the model coefficients for OLS and GWR regressions on property crime diversity and violent crime diversity. Here we see that the coefficients of GSV diversity are still second (next to population) in the OLS models, but are less significant in the case of the GWR models. Thus, when accounting for geographic variation of the model (GWR), GSV diversity is predicting variations in crime diversity arising due to variations across property and violent crime, but less so when restricting to property or violent crime. While our study here focuses on modeling crime diversity, we note that street view images may also be used to model crime volume in regressions with spatial covariates. In Table 11 we show results for spatial (linear) regressions estimated similarly to those above, but with the response variable being crime volume instead of diversity. We note that the street view diversity index is a statistically significant variable, though its importance is less than in the case of modeling crime diversity. For researchers interested in modeling crime volume, individual object counts may be better features (such as using the density of cars, houses, etc. as individual predictors). ## 9 Discussion Several implications from the present study can be gleaned for research and policy. Findings presented here indicate two primary implications for research. First, Google Street View (via the Google Vision API) can provide important, cost-effective empirical insights to best understand distinct geographic environments of crime. Methods such as systematic social observations of places as well as qualitative data-coding by scholars examining images or video require significant resources. This is also true of of access to commercially held databases in the United States. Though granular point-level data on environmental characteristics is more readily available in Europe and other places, such data in the United States requires scholars to pay premium purchase prices for access. Indeed, GSV is an additional methodological tool that can be utilized to quantify the environmental backcloth where crime occurs. Scholars seeking to best understand crime at place could utilize GSV as a supplemental source of data. Second, environment diversity, as measured by image tagging in GSV, was observed to be more predictive of crime diversity (variety of crime types) than commonly used census measures. The observed explanatory power of our GSV index lends support to the central role of environmental cues of offending. Supplemental analyses of specific image tags, or what is being observed in an image, reveals features consistent with geographic traits posited in opportunity and ecological perspectives of offending. Google Vision image tags capture crime targets such as vehicles, luxury vehicles, homes, vehicles parked on the street, and vehicles located in parking lots. Guardian aspects of targets are also present, including features like walls, fences, street lights, and gates (one could also contend that the presence of vehicles on the roadway is also a form of guardianship). Physical incivilities, such as graffiti and trash, are also tag in placebased images. Features of the environmental backcloth can also be captured, including bars, restaurants, paths, walkways, roadway thoroughfare, river, train tracks, and suburban versus urban. Beyond routine activity and crime pattern theories and related to social disorganization, parks, sports courts, places of worship, and voting centers are tagged in images features commonly associated with neighborhood capacity to increase collective efficacy. Relatedly, Jones and Pridemore [77] recently articulated a multi-level theory of routine activities and social disorganization to explain crime concentration. Drawing on violent and property crime in Lexington, Kentucky they observed that micro-level social disorganization impacts crime differently at the street-segment level as compared to neighborhood-level disorganization. They go on to note that (p. 22) "The precise mechanisms that distinguish localized forms of social disorganization from neighborhood forms of social disorganization have not been fully considered in the empirical literature, and more research is required to determine the precise reasons for these independent effects". Notably, their index of local social disorganization included disorder, mixed land used, and suburbanization at the micro-level each of which is captured via Google Vision image tags. This proves advantageous for crime and place scholars as built environment data, such as land use metrics and business types, are commonly housed by commercial data vendors (such as InfoBase or InfoGroup) or require researchers to merge varying data sets and thereby introducing other sets of challenges. Moreover, GSV data to capture built and environmental features of place enable researchers to examine these features at more granular and localized levels. For instance, most readily available data regarding land use are limited to the block-group level whereas GSV can be drilled down to specific places. GSV images also provide rich content through the Google Vision image tag that can be quantified, such as graffiti or trees, while the images themselves can be analyzed by researchers to code qualitative distinctions akin to a systematic social observation methodology [57]. In addition, GSV boasts significant geographic coverage in the U.S., Europe, Australia, and many other countries. This is especially true for urban environments where the majority of crime and place research occurs. As can be reviewed on Google Street View's "Explore" website, coverage of many suburban areas is robust. Rural areas are less represented and are often limited to major roadway thoroughfares, though planned coverage schedules indicate rural areas will be increasingly captured in the near future. Thus, GSV data may be more accessible to scholars seeking to explore crime and place phenomenon in areas where census-type data (community, built, or environmental) may not be available. We also note that GSV data can be used at micro-geographical units of observation where census data is not defined. For example, the correlation coefficient between GSV diversity and crime diversity increases from .2 to .4 when going from census blocks to 100mx100m grid cells. This is one direction for future research. Methods used in the present study also have implications for a growing body of spatiotemporal analyses of crime. Repeat and near-repeat phenomena of crime [78, 79] suggests offenders target and re-offend based on two hypotheses. The boost hypothesis suggests offenders operate among cooffending networks and communicate target suitability to one another [80]. Grounded in environmental explanations of crime, the flag hypothesis contends that repeat and near-repeat offenses occur as a result of environmental determinants conducive to certain offenses. For example, Townsley et al [81] observed the occurrence of near-repeat residential burglary among suburbs with homogeneous houses as opposed to more mixed-land use areas. Put simply, offenders diagnose environments and identify areas ripe for certain offenses, such as a poorly lit parking lot that contains numerous sought-after vehicles with easy street access [82]. Unfortunately and as discussed previously, environmental cues observed by offenders are difficulty to quantify when explaining spatiotemporal patterns of crime. Use of GSV may lend additional perspectives to inform the boost versus flag hypotheses debate as scholars would be able to empirically estimate environmental distinctions frequently observed in areas with repeat and near-repeat offenses. Population and census block land size served as the primary catalysts for crime diversity, lending further support to observations by Brantingham [1] and Lentz [51] that crime diversity is indeed a function of geographic size. More specifically, these previous studies suggest crime diversity is a function of specific offending cues and geographic capacity to present such cues to offenders. Our results mirror these conclusions in that as population increases so too does environmental diversity and crime diversity. More specifically, the variety of observed environment diversity as measured by GSV may reflect the variability of cues that either facilitate or inhibit offending at places. Thus, if crime diversity is a function of geographic size, what are the implications for policy? To begin, police agencies seeking to engage in crime prevention strategies can tailor interventions to areas based upon their population or geographic size, or based on environment diversity indicators (either through GSV or patrol officer observations/intuition). Areas of high population or size may benefit from general prevention approaches proven effective in place-based policing studies, such as random proactive patrols [83] or increased officer activity to increase perceptions of being caught [84]. In this sense, high environmental and crime diversity may be approached through the generalcrime perspective. Such areas are also likely to benefit from improved
collective efficacy among residents to buttress informal social controls through community-building programs [75, 85]. For areas with reduced environmental and crime diversity, officers can engage in problem-oriented approaches proven to generate notable crime reduction benefits in hot spots [86], as well as situational crime prevention techniques [87]. This is not to suggest these interventions are mutually exclusive, however police agencies should understand the likelihood of crime-specific interventions may reduce certain crime types, but not generate overall significant crime reductions in a given area [34]. Haberman [50] speaks to this complex intervention scenario in his study of overlapping crime hot spots in Philadelphia. In short, his analysis demonstrated that hot spots are indeed crime-specific and demonstrate minimal overlap or correlation across geographic occurrence of crime type. If the end-goal of a police agency is to reduce overall crime, an agency should target areas that are both high in crime and environmental diversity as well as population. Unfortunately, such an approach would be resource-intensive as officers would be expected to engage in higher volumes of patrols and activities across larger geographic spans. Conversely, agencies seeking to target specific crime problems could identify areas of interest and diagnose environmental factors likely serving as catalysts in such areas to engage in problem-solving, situational crime prevention, and crime prevention through environmental design strategies. As noted by Sampson and colleagues [88], tangible crime reduction efforts are more likely to occur when the focus is on changing places and not people. Thus, the challenge remains as to what characteristics about places need to be changed? Certainly this will vary from place to place, but perhaps Google Vision API is another tool in the toolbox of criminologists and police departments to refine measurement of places and their environmental characteristics to identify such potential changes. ### 10 Limitations This study is not without limitations. We focus on crime diversity and environmental diversity as a means to demonstrate the utility of GSV as a unique and cost-effective means of examining crime at place. Our decision to focus on crime diversity is an attempt to best capture the occurrence of crime at place. Scholars have debated the appropriate outcome of interest for crime at places studies [77] and we believe crime diversity reflects the reality of crime occurrence and multi-crime challenges police face at places. Relatedly, our crime diversity measure is limited to the offenses captured by the Los Angeles Police Department, and as measured via their criminal code processing. Though there exist several hundred of such offenses, the maximum number of unique offenses is governed by the number of offense types reported. Future research may seek to refine such offense codes and either collapse or expand upon existing offense types. For example, some crime categories such as fraud and identity theft may not be strongly tied to environmental features observable through street view. As environmental diversity computed with street view does not explain all the variation in crime diversity, part of the remaining variation may be due to the presence of these crimes that are not tied to street-observable geography. How to deal with these variables, perhaps by systematically removing them or estimating crime diversity on subsets of cohesive crime topic groups [89], will be a focus of future research. Furthermore, environmental diversity is a function of the variability captured by Google Vision image tagging within GSV images. In sum, 408 different image tags were captured via Google Vision. Though several tags are quite unique, such as graffiti or iron rod fencing, others are vague or synonymous with other tags. For example, tags such parking are vague and could reference a large surface parking lot or more finite curbside parking spots. Image tags such as home, house, dwelling, and residential building are rather synonymous. However, a review of sampled images and their associated tags reveal unique differences that may have implications for the nuances of place-based research. For example, an image tag such as "fence" often refers to a commercial or industrial fence made of iron and of tall height. Conversely, a "home fencing" tag reflects a fence that is wood and shorter. These similar yet different image tags also speak to the environmental context of a given fence and other objects in the image. "Home fencing" is a fence in front of a residential home as opposed to a fence surrounding a commercial building. Similarly, different tags that capture residences may appear synonymous but reflect differences between stand alone single-family homes and connected row houses. The GSV Vision API attempts to distinguish between these similar but different structures - each of which have implications for defining offending environments. In fact, the classification is deterministic using a neural network where low level features (image texture, color, edges, and so forth) are then mapped to high level features, resulting in a prediction. Nonetheless, given the limited use of GSV Vision API in criminology, we urge future scholary inquiries to examine this issue in detail to provide an empirical explanation, or road map, as to what features in a given image generate specific tag identities resulting in distinguishable features. Emerging methods and advanced qualitative analytic programs, such as word2vec [90], or other rich data mining programs may be fruitful in this endeavor. Our decision to leverage raw image tags in the current study was to maximize transparency with our analyses and enable replication while avoiding subjective or arbitrary collapsing of image tag categories. Tagged images from Google Vision data face temporal challenges when merging with crime and other sources of data. Images captured by GSV are cross-sectional and represent a given place, or environment, at a single point in time. Though image updating does occur, it does not happen on a frequent basis. Thus, appropriately merging GSV image data with crime data along temporal consistencies presents a challenge that must be navigated. In some cases images used in this study were from 2015, whereas the crime incident data is from 2013 (hence the focus of this paper is on inferring correlations between variables, rather than causality). Google's Street view "Explore" page provides image collection logs that may be leveraged to align GSV data with sources of data. This issue is less of a concern for image tags such as building, roadways, or urban versus rural as such environmental features are likely to be stagnant. However, indicators of physical incivility such as trash and graffiti as well as the presence of pedestrians or vehicles that may serve as targets or guardians are subject to change over time. Such temporal limitations of GSV data have been well documented in previous studies [3, 58, 91, 92]. It should be noted that many commercial sources of data may suffer from similar time-dependent concerns. For example, official geocoded business records report a cross-sectional snapshot of business types in a given place. If a business were to close and become vacant, or a new business open in the same location, these data would suffer similar shortcomings. Despite these limitations, the present study has demonstrated that GSV can be leveraged as a viable means to capture environmental characteristics of places at the street-level, that such environmental characteristics significantly predict crime diversity consistent with previous research, and that such findings are consistent when examining both property and violent crime at place. These findings represent substantive promise, and challenges, for scholars seeking to leverage innovative methods to examine crime at place in the future. ## References - [1] P. J. Brantingham, "Crime diversity," *Criminology*, vol. 54, no. 4, pp. 553–586, 2016. - [2] P. J. Brantingham, P. L. Brantingham *et al.*, *Environmental criminology*. Sage Publications Beverly Hills, CA, 1981. - [3] S. H. Langton and W. Steenbeek, "Residential burglary target selection: An analysis at the property-level using google street view," *Applied Geography*, vol. 86, pp. 292–299, 2017. - [4] R. E. Park, E. W. Burgess, and R. McKenzie, "The growth of the city: An introduction to a research project," *The city*, pp. 47–62, 1925. - [5] C. R. Shaw and H. D. McKay, Juvenile Delinquency and Urban Areas: A Study of Rates in Relation to Differential Characteristics of Local Communities in American Life. University of Chicago Press, 1942. - [6] W. I. Thomas and F. Znaniecki, *The Polish peasant in Europe and America: Monograph of an immigrant group.* University of Chicago Press, 1918, vol. 2. - [7] F. M. Thrasher, *The gang: A study of 1,313 gangs in Chicago*. University of Chicago Press, 1927. - [8] R. J. Sampson and W. B. Groves, "Community structure and crime: Testing social-disorganization theory," *American journal of sociology*, vol. 94, no. 4, pp. 774–802, 1989. - [9] T. C. Pratt and F. T. Cullen, "Assessing macro-level predictors and theories of crime: A meta-analysis," *Crime and justice*, vol. 32, pp. 373–450, 2005. - [10] J. Eck and D. L. Weisburd, "Crime places in crime theory," *Crime and place: Crime prevention studies*, vol. 4, 2015. - [11] D. B. Cornish and R. V. Clarke, *The Reasoning Criminal: Rational Choice Perspectives on Offending*. Transaction Publishers, 1986. - [12] R. V. G. Clarke, Situational crime prevention. Criminal Justice Press Monsey, NY, 1997. - [13] B. C. Welsh and D. P. Farrington, "Surveillance for crime prevention in public space: Results and policy choices in britain and america," *Criminology & Public Policy*, vol. 3, no. 3, pp. 497–526, 2004. - [14] M. J. Smith, "Exploring target
attractiveness in vandalism: an experimental approach," *Crime Prevention Studies*, vol. 16, pp. 197–236, 2003. - [15] L. E. Cohen and M. Felson, "Social change and crime rate trends: A routine activity approach," American sociological review, pp. 588–608, 1979. - [16] R. Clarke and J. E. Eck, Become a problem-solving crime analyst. Willan, 2014. - [17] D. Weisburd, "The law of crime concentration and the criminology of place," *Criminology*, vol. 53, no. 2, pp. 133–157, 2015. - [18] P. Brantingham and P. Brantingham, "Crime pattern theory," in *Environmental criminology and crime analysis*. Willan, 2013, pp. 100–116. - [19] B. Lantz and R. B. Ruback, "A networked boost: Burglary co-offending and repeat victimization using a network approach," *Crime & Delinquency*, vol. 63, no. 9, pp. 1066–1090, 2017. - [20] M. Felson, Crime and nature. Sage, 2006. - [21] P. Brantingham and P. Brantingham, "Criminality of place," European journal on criminal policy and research, vol. 3, no. 3, pp. 5–26, 1995. - [22] J. E. Eck, "A general model of the geography of illicit retail market-places," *Crime and place*, vol. 4, pp. 67–93, 1995. - [23] L. W. Kennedy, J. M. Caplan, and E. Piza, "Risk clusters, hotspots, and spatial intelligence: risk terrain modeling as an algorithm for police resource allocation strategies," *Journal of Quantitative Criminology*, vol. 27, no. 3, pp. 339–362, 2011. - [24] A. A. Braga and D. Weisburd, *Policing problem places: Crime hot spots and effective prevention*. Oxford University Press on Demand, 2010. - [25] P. K. S. Jean, Pockets of crime: Broken windows, collective efficacy, and the criminal point of view. University of Chicago Press, 2008. - [26] J. B. Kinney, P. L. Brantingham, K. Wuschke, M. G. Kirk, and P. J. Brantingham, "Crime attractors, generators and detractors: Land use and urban crime opportunities," *Built environment*, vol. 34, no. 1, pp. 62–74, 2008. - [27] A. Boessen and J. R. Hipp, "Close-ups and the scale of ecology: Land uses and the geography of social context and crime," *Criminology*, vol. 53, no. 3, pp. 399–426, 2015. - [28] T. D. Stucky and J. R. Ottensmann, "Land use and violent crime," *Criminology*, vol. 47, no. 4, pp. 1223–1264, 2009. - [29] P. L. Brantingham and P. J. Brantingham, "Environment, routine and situation: Toward a pattern theory of crime," *Advances in criminological theory*, vol. 5, no. 2, pp. 259–94, 1993. - [30] D. W. Osgood and C. J. Schreck, "A new method for studying the extent, stability, and predictors of individual specialization in violence," *Criminology*, vol. 45, no. 2, pp. 273–312, 2007. - [31] A. Piquero, R. P. OSTER, P. Mazerolle, R. Brame, and C. W. Dean, "Onset age and offense specialization," *Journal of Research in Crime and Delinquency*, vol. 36, no. 3, pp. 275–299, 1999. - [32] D. Weisburd, L. Maher, L. Sherman, M. Buerger, E. Cohn, A. Petrisino et al., "Contrasting crime general and crime specific theory: The case of hot spots of crime," Advances in criminological theory, vol. 4, no. 1, pp. 45–69, 1992. - [33] R. V. Clarke and D. B. Cornish, "Modeling offenders' decisions: A framework for research and policy," *Crime and justice*, vol. 6, pp. 147– 185, 1985. - [34] M. Quick, G. Li, and I. Brunton-Smith, "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," *Journal of Criminal Justice*, vol. 58, pp. 22–32, 2018. - [35] J. Q. Wilson and G. L. Kelling, "Broken windows," Atlantic monthly, vol. 249, no. 3, pp. 29–38, 1982. - [36] K. Keizer, S. Lindenberg, and L. Steg, "The spreading of disorder," Science, vol. 322, no. 5908, pp. 1681–1685, 2008. - [37] E. J. Palmer, A. Holmes, and C. R. Hollin, "Investigating burglars' decisions: factors influencing target choice, method of entry, reasons for offending, repeat victimisation of a property and victim awareness," *Security Journal*, vol. 15, no. 1, pp. 7–18, 2002. - [38] R. B. Taylor and S. Gottfredson, "Environmental design, crime, and prevention: An examination of community dynamics," *Crime and justice*, vol. 8, pp. 387–416, 1986. - [39] R. T. Wright and S. H. Decker, Burglars on the job: Streetlife and residential break-ins. UPNE, 1996. - [40] R. Wright, R. H. Logie, and S. H. Decker, "Criminal expertise and offender decision making: An experimental study of the target selection process in residential burglary," *Journal of Research in Crime and Delinquency*, vol. 32, no. 1, pp. 39–53, 1995. - [41] K. J. Bowers and S. D. Johnson, "Domestic burglary repeats and spacetime clusters: The dimensions of risk," *European Journal of Criminol*ogy, vol. 2, no. 1, pp. 67–92, 2005. - [42] C. Vandeviver and W. Bernasco, "location, location, location: Effects of neighborhood and house attributes on burglars target selection," *Journal of Quantitative Criminology*, pp. 1–43, 2019. - [43] R. B. Taylor, Community criminology: Fundamentals of spatial and temporal scaling, ecological indicators, and selectivity bias. NYU Press, 2015. - [44] S. D. Johnson, "A brief history of the analysis of crime concentration," *European Journal of Applied Mathematics*, vol. 21, no. 4-5, pp. 349–370, 2010. - [45] D. T. OBrien, "The action is everywhere, but greater at more localized spatial scales: Comparing concentrations of crime across addresses, streets, and neighborhoods," *Journal of Research in Crime and Delinquency*, p. 0022427818806040, 2018. - [46] J. M. Caplan, L. W. Kennedy, and J. Miller, "Risk terrain modeling: brokering criminological theory and gis methods for crime forecasting," *Justice Quarterly*, vol. 28, no. 2, pp. 360–381, 2011. - [47] E. R. Groff, D. Weisburd, and S.-M. Yang, "Is it important to examine crime trends at a local micro level?: a longitudinal analysis of street to street variability in crime trajectories," *Journal of Quantitative Criminology*, vol. 26, no. 1, pp. 7–32, 2010. - [48] A. A. Braga and R. V. Clarke, "Explaining high-risk concentrations of crime in the city: Social disorganization, crime opportunities, and important next steps," *Journal of Research in Crime and Delinquency*, vol. 51, no. 4, pp. 480–498, 2014. - [49] A. Malm, N. Pollard, P. Brantingham, P. Tinsley, D. Plecas, P. Brantingham, I. Cohen, and B. Kinney, "A 30 year analysis of police service delivery and costing," *International Centre for Urban Research Studies (ICURS)*, 2005. - [50] C. P. Haberman, "Overlapping hot spots? examination of the spatial heterogeneity of hot spots of different crime types," *Criminology & Public Policy*, vol. 16, no. 2, pp. 633–660, 2017. - [51] T. S. Lentz, "Crime diversity: reexamining crime richness across spatial scales," *Journal of Contemporary Criminal Justice*, vol. 34, no. 3, pp. 312–335, 2018. - [52] V. A. Sytsma and E. L. Piza, "Script analysis of open-air drug selling: A systematic social observation of cctv footage," *Journal of Research in Crime and Delinquency*, vol. 55, no. 1, pp. 78–102, 2018. - [53] D. W. Willits and D. A. Makin, "Show me what happened: Analyzing use of force through analysis of body-worn camera footage," *Journal of research in crime and delinquency*, vol. 55, no. 1, pp. 51–77, 2018. - [54] C. Vandeviver, "Applying google maps and google street view in criminological research," *Crime Science*, vol. 3, no. 1, p. 13, 2014. - [55] T. Kindynis, "Ripping up the map: criminology and cartography reconsidered," *British journal of criminology*, vol. 54, no. 2, pp. 222–243, 2014. - [56] P. Clarke, J. Ailshire, R. Melendez, M. Bader, and J. Morenoff, "Using google earth to conduct a neighborhood audit: reliability of a virtual audit instrument," *Health & place*, vol. 16, no. 6, pp. 1224–1229, 2010. - [57] C. L. Odgers, A. Caspi, C. J. Bates, R. J. Sampson, and T. E. Moffitt, "Systematic social observation of childrens neighborhoods using google street view: a reliable and cost-effective method," *Journal of Child Psychology and Psychiatry*, vol. 53, no. 10, pp. 1009–1017, 2012. - [58] A. G. Rundle, M. D. Bader, C. A. Richards, K. M. Neckerman, and J. O. Teitler, "Using google street view to audit neighborhood environments," American journal of preventive medicine, vol. 40, no. 1, pp. 94–100, 2011. - [59] H. M. Badland, S. Opit, K. Witten, R. A. Kearns, and S. Mavoa, "Can virtual streetscape audits reliably replace physical streetscape audits?" *Journal of Urban Health*, vol. 87, no. 6, pp. 1007–1016, 2010. - [60] E. Ben-Joseph, J. S. Lee, E. K. Cromley, F. Laden, and P. J. Troped, "Virtual and actual: relative accuracy of on-site and web-based instruments in auditing the environment for physical activity," *Health & place*, vol. 19, pp. 138–150, 2013. - [61] C. M. Kelly, J. S. Wilson, E. A. Baker, D. K. Miller, and M. Schootman, "Using google street view to audit the built environment: inter-rater reliability results," *Annals of Behavioral Medicine*, vol. 45, no. suppl_1, pp. S108–S112, 2012. - [62] B. T. Taylor, P. Fernando, A. E. Bauman, A. Williamson, J. C. Craig, and S. Redman, "Measuring the quality of public open space using google earth," *American journal of preventive medicine*, vol. 40, no. 2, pp. 105–112, 2011. - [63] L. He, A. Páez, and D. Liu, "Built environment and violent crime: An environmental audit approach using google street view," *Computers, Environment and Urban Systems*, vol. 66, pp. 83–95, 2017. - [64] R. J. Sampson, "The place of context: a theory and strategy for criminology's hard problems," *Criminology*, vol. 51, no. 1, pp. 1–31, 2013. - [65] C. Graif and R. J. Sampson, "Spatial heterogeneity in the effects of immigration and diversity on neighborhood homicide rates," *Homicide studies*, vol. 13, no. 3, pp. 242–260, 2009. - [66] L. Anselin, "Spatial regression," The SAGE handbook of spatial analysis, vol. 1, pp. 255–276, 2009. - [67] C. E. Shannon, "A mathematical theory of communication," *Bell system technical journal*, vol. 27, no. 3, pp. 379–423, 1948. - [68] R. Bivand, D. Yu, T. Nakaya, M.-A. Garcia-Lopez, and M. R. Bivand, "Package spgwr,"
R software package, 2017. - [69] F. E. Harrell Jr, Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer, 2015. - [70] C. T. Lowenkamp, F. T. Cullen, and T. C. Pratt, "Replicating sampson and groves's test of social disorganization theory: Revisiting a criminological classic," *Journal of Research in Crime and Delinquency*, vol. 40, no. 4, pp. 351–373, 2003. - [71] C. E. Kubrin and R. Weitzer, "New directions in social disorganization theory," *Journal of research in crime and delinquency*, vol. 40, no. 4, pp. 374–402, 2003. - [72] B. M. Veysey and S. F. Messner, "Further testing of social disorganization theory: An elaboration of sampson and groves's community structure and crime," *Journal of Research in Crime and Delinquency*, vol. 36, no. 2, pp. 156–174, 1999. - [73] R. A. Cloward and L. E. Ohlin, *Delinquency and opportunity: A study of delinquent gangs*. Routledge, 2013. - [74] R. J. Bursik Jr, H. G. Grasmick et al., Neighborhoods & crime. Lexington Books, 1999. - [75] C. J. Schreck, J. M. McGloin, and D. S. Kirk, "On the origins of the violent neighborhood: A study of the nature and predictors of crimetype differentiation across chicago neighborhoods," *Justice Quarterly*, vol. 26, no. 4, pp. 771–794, 2009. - [76] B. D. Warner, "The role of attenuated culture in social disorganization theory," *Criminology*, vol. 41, no. 1, pp. 73–98, 2003. - [77] R. W. Jones and W. A. Pridemore, "Toward an integrated multilevel theory of crime at place: Routine activities, social disorganization, and the law of crime concentration," *Journal of Quantitative Criminology*, vol. 35, no. 3, pp. 543–572, 2019. - [78] W. Bernasco, "Them again? same-offender involvement in repeat and near repeat burglaries," *European Journal of Criminology*, vol. 5, no. 4, pp. 411–431, 2008. - [79] M. B. Short, M. R. Dorsogna, P. J. Brantingham, and G. E. Tita, "Measuring and modeling repeat and near-repeat burglary effects," *Journal of Quantitative Criminology*, vol. 25, no. 3, pp. 325–339, 2009. - [80] K. J. Bowers and S. D. Johnson, "Who commits near repeats? a test of the boost explanation." Western Criminology Review, vol. 5, no. 3, 2004. - [81] M. Townsley, R. Homel, and J. Chaseling, "Infectious burglaries. a test of the near repeat hypothesis," *British Journal of Criminology*, vol. 43, no. 3, pp. 615–633, 2003. - [82] E. L. Piza and J. G. Carter, "Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft," *Justice Quarterly*, vol. 35, no. 5, pp. 842–870, 2018. - [83] C. S. Koper, "Just enough police presence: Reducing crime and disorderly behavior by optimizing patrol time in crime hot spots," *Justice quarterly*, vol. 12, no. 4, pp. 649–672, 1995. - [84] J. H. Ratcliffe, T. Taniguchi, E. R. Groff, and J. D. Wood, "The philadel-phia foot patrol experiment: A randomized controlled trial of police patrol effectiveness in violent crime hotspots," *Criminology*, vol. 49, no. 3, pp. 795–831, 2011. - [85] P. Sharkey, G. Torrats-Espinosa, and D. Takyar, "Community and the crime decline: The causal effect of local nonprofits on violent crime," *American Sociological Review*, vol. 82, no. 6, pp. 1214–1240, 2017. - [86] A. A. Braga, A. V. Papachristos, and D. M. Hureau, "The effects of hot spots policing on crime: An updated systematic review and meta-analysis," *Justice quarterly*, vol. 31, no. 4, pp. 633–663, 2014. - [87] R. V. Clarke, "Situational crime prevention," Crime and justice, vol. 19, pp. 91–150, 1995. - [88] R. J. Sampson, S. W. Raudenbush, and F. Earls, "Neighborhoods and violent crime: A multilevel study of collective efficacy," *Science*, vol. 277, no. 5328, pp. 918–924, 1997. - [89] D. Kuang, P. J. Brantingham, and A. L. Bertozzi, "Crime topic modeling," *Crime Science*, vol. 6, no. 1, p. 12, 2017. - [90] X. Rong, "word2vec parameter learning explained," arXiv preprint arXiv:1411.2738, 2014. - [91] S. Bloch, "An on-the-ground challenge to uses of spatial big data in assessing neighborhood character," *Geographical Review*. - [92] H. Charreire, J. D. Mackenbach, M. Ouasti, J. Lakerveld, S. Compernolle, M. Ben-Rebah, M. McKee, J. Brug, H. Rutter, and J.-M. Oppert, "Using remote sensing to define environmental characteristics related to physical activity and dietary behaviours: a systematic review (the spotlight project)," *Health & place*, vol. 25, pp. 1–9, 2014. | Category | Code | Frequency | |---|-------------------|--------------| | Homicide | 110 | 250 | | Robbery | 210 | 6859 | | Robbery - Attempt | 220 | 976 | | Agg. Assault | 230 | 6995 | | ADW Against Police Officer | 231 | 126 | | Child Neglect | $\frac{237}{251}$ | 509
243 | | Shots Fired Inhabited Dwell. Burglary | 310 | 14231 | | Burglary - Attempt | 320 | 1206 | | Burg. From Vehicle | 330 | 15445 | | Grand Theft From Vehicle | 331 | 2539 | | Grand Theft | 341 | 6609 | | Grand Shoplifting | 343 | 165 | | Theft From Person | 350 | 1429 | | Pursesnatch | 351 | 95 | | Identity Theft | 354 | 11709 | | Burg. From Vehicle - Attempt | 410 | 264 | | Petty Theft From Vehicle | 420 | 7604 | | Theft From Vehicle - Attempt | 421 | 81 | | Prop. Missing (Grand) Recovered Vehicle | 430 | 55 | | Prop. Missing (Petty) Recovered Vehicle | 431 | 80 | | Driving w/o Owner Consent | 433 | 87 | | False Imprisonment | 434 | 81 | | Resisting Arrests | 437 | 338 | | Petty Theft | 440 | 15913 | | Theft - Attempt | 441 | 198 | | Petty Shoplifting | 442
480 | 3637
884 | | Bicycle Stolen
Stolen Vehicle | 510 | 14127 | | Stolen Vehicle - Attempt | 520 | 320 | | Vehicle Recovered | 521 | 12294 | | Battery on Police Officer | 623 | 322 | | Battery (Misdemeanor) | 624 | 18882 | | Assault (Misdemeanor) | 625 | 94 | | Throwing Object Moving Vehicle | 647 | 109 | | Arson | 648 | 317 | | Forged Document | 649 | 2609 | | Credit Card Fraud (Grand) | 653 | 121 | | Credit Card Fraud (Petty) | 660 | 99 | | Computer Crime | 661 | 88 | | BUNCO (Grand Theft) | 662 | 401 | | BUNCO (Petty Theft) | 664 | 326 | | Embezzlement (Grand) | 668 | 726 | | Vandalism (Grand)
Vandalism (Petty) | $740 \\ 745$ | 8907
9091 | | Shots Fired | 753 | 324 | | Bomb Threat | 755 | 109 | | Brandish Weapon | 761 | 710 | | Stalking | 763 | 180 | | Violation Court Order | 900 | 1881 | | Violation Restraining Order | 901 | 1747 | | Violation Temp. Restrain. Order | 902 | 90 | | Kidnapping | 910 | 241 | | Kidnapping - Attempt | 920 | 80 | | Child Stealing (Custody Dispute) | 922 | 95 | | Threatening Phone Call | 928 | 283 | | Criminal Threats | 930 | 5589 | | Prowler | 933 | 140 | | Extortion | 940 | 100 | | Cruelty to Animals | 943 | 110 | | Other Crime | 946 | 1929 | | Defrauding Innkeeper | 951 | 227 | | Obscene Phone Call | 956 | 1866 | | Death Report | 979 | 130 | Table 1: Crime categories and frequencies for Los Angeles 2013 crime data. | 7. | | | |------------------------------------|-----------|-----------| | Name | mean | st. dev. | | GSV Image Index | 2.63 | 0.39 | | Household Heterogeneity | 2.02 | 0.23 | | Language Heterogeneity | 1.2 | 0.31 | | Race Heterogeneity | 1.16 | 0.26 | | Per Capita Income | 31998.14 | 24864.97 | | Population | 296.85 | 329.67 | | Census Block Land Size | 557623.21 | 964587.99 | | Population Male | 833.62 | 415.74 | | Population Female | 850.88 | 443.12 | | Median Age | 37.25 | 7.48 | | Hispanic or Latino Ethnicity | 805.05 | 692.46 | | Poverty Undetermined | 1640.79 | 783.09 | | Median Household Income | 62938.95 | 34905.62 | | Labor Force Unemployed | 83.72 | 70.85 | | Vacant Housing Units | 35.28 | 40.76 | | Powerty status uder 50 | 141.88 | 167.39 | | Poverty Status .5099 | 190.26 | 203.63 | | Poverty Status 1.00-1.24 | 97.27 | 105.49 | | Poverty Status 1.25-1.49 | 99.79 | 108.29 | | Poverty Status 1.50-1.84 | 119.08 | 120.84 | | Poverty Status 1.84-1.99 | 47.92 | 62.93 | | No Schooling Completed Educ | 35.36 | 38.78 | | Regular High School Dipl Educ | 208.14 | 132.91 | | GED or Alternative Dipl Educ | 19.1 | 21.76 | | Less than 1 Year College Educ | 45.19 | 38.27 | | Some College More than 1 Year Educ | 165.15 | 103.64 | | Associates degree | 69.82 | 54.82 | | Bachelors degree | 244.68 | 210.62 | | Masters Degre | 77.46 | 84.92 | | Professional Degree | 30.54 | 53.73 | | White alone | 922.7 | 581.21 | | African American Alone | 125.32 | 180.7 | | American Indian and Alaska Native | 9.62 | 23.07 | | Asian Alone | 189.88 | 251.41 | | Native Hawaiian Pacific Islander | 2.72 | 10.67 | | Other Race Alone | 373.57 | 404.03 | | All Crime index | 1.58 | 0.75 | Table 2: Mean and standard deviations of dependent and target variables for regression (all crime index target variable). | Object | Frequency | Object | Frequency | |--------------------|-----------|----------------------|-----------| | road | 14388 | car | 12551 | | property | 9855 | residential area | 9753 | | lane | 9158 | mode of transport | 8681 | | asphalt | 7999 | tree | 7562 | | sky | 7168 | neighbourhood | 6401 | | transport | 6254 | vehicle | 5703 | | town | 5157 | motor vehicle | 5143 | | infrastructure | 4396 | family car | 4284 | | plant | 4228 | luxury vehicle | 3555 | | real estate | 3100 | road trip | 2398 | | area | 2397 | home | 2337 | | land lot | 2019 | house | 1944 | | street | 1626 | suburb | 1536 | | land vehicle | 1369 | road surface | 1120 | | woody plant | 1118 | metropolitan area | 887 | | landscape | 862 | building | 827 | | highway | 785 | public space | 645 | | estate | 622 | automotive exterior | 589 | | path | 579 | vegetation | 439 | | arecales | 391 | wall | 391 | | grass | 387 | facade | 375 | | walkway | 364 | fence | 313 | | urban area | 303 | palm tree | 299 | | traffic light | 292 | city | 291 | | roof | 282 | signaling device | 272 | | yard | 266 | shrub | 254 | | condominium | 231 | thoroughfare | 230 | | flora | 216 | cottage | 211 | | street light | 193 | outdoor structure | 184 | |
biome | 177 | sedan | 173 | | mid size car | 173 | parking lot | 172 | | plant community | 171 | ecosystem | 161 | | parking | 153 | automotive design | 150 | | structure | 145 | architecture | 137 | | intersection | 136 | window | 132 | | advertising | 132 | cloud | 123 | | commercial vehicle | 119 | villa | 118 | | recreation | 117 | geological phenomeno | 100 | | village | 100 | downtown | 100 | Table 3: Objects with frequency \geq 100 and frequencies for Los Angeles. | | all linear | all gwr | prop. linear | prop. gwr | viol. linear | viol. gwr | |-------|------------|---------|--------------|-----------|--------------|-----------| | R^2 | 0.426 | 0.974 | 0.381 | 0.970 | 0.375 | 0.976 | | AIC | 10578.9 | -3234.4 | 10727.2 | -2585.0 | 8983.9 | -2922.8 | Table 4: Comparison of linear and gwr models. | Coef. | Est. | Std. Err. | t val | p val | Sig. | |------------------------------------|---------------|-----------------|---------|----------|------| | Population | 0.46 | 0.0143 | 32.264 | <2e-16 | *** | | Median Household Income | -0.28 | 0.0149 0.0239 | -11.731 | <2e-16 | *** | | GSV Image Index | 0.172 | 0.0233 | 14.485 | <2e-16 | *** | | Household Heterogeneity | 0.172 0.154 | 0.0113 | 8.196 | 3.19E-16 | *** | | Census Block Land Size | 0.121 | 0.0149 | 8.144 | 4.90E-16 | *** | | Median Age | -0.148 | 0.0113 | -8.08 | 8.20E-16 | *** | | Language Heterogeneity | -0.0703 | 0.0166 | -4.239 | 2.29E-05 | *** | | No Schooling Completed Educ | 0.0607 | 0.0154 | 3.938 | 8.34E-05 | *** | | Poverty Status 1.00-1.24 | -0.0543 | 0.0165 | -3.299 | 0.000977 | *** | | Some College More than 1 Year Educ | 0.0658 | 0.0208 | 3.159 | 0.001596 | ** | | Labor Force Unemployed | -0.0607 | 0.0195 | -3.108 | 0.001895 | ** | | Professional Degree | 0.0656 | 0.023 | 2.848 | 0.004423 | ** | | Poverty Status 1.25-1.49 | 0.0448 | 0.0164 | 2.74 | 0.006166 | ** | | Poverty Status 1.84-1.99 | 0.0335 | 0.0128 | 2.616 | 0.008924 | ** | | African American Alone | 0.106 | 0.0433 | 2.436 | 0.014884 | * | | Vacant Housing Units | 0.0289 | 0.0144 | 2.006 | 0.044864 | * | | Bachelors Degree | 0.0625 | 0.0334 | 1.873 | 0.061093 | | | Racial Heterogeneity | -0.0409 | 0.0218 | -1.871 | 0.06137 | | | Less than 1 Year College Educ | 0.0263 | 0.0153 | 1.72 | 0.085511 | | | Associates Degree | -0.0256 | 0.0161 | -1.585 | 0.113051 | | | Population Female | -0.161 | 0.102 | -1.582 | 0.11375 | | | Poverty Status .5099 | 0.026 | 0.0217 | 1.201 | 0.229856 | | | Native Hawaiian Pacific Islander | 0.014 | 0.0119 | 1.182 | 0.237298 | | | Per Capita Income | 0.0277 | 0.0248 | 1.12 | 0.262719 | | | Asian Alone | 0.0497 | 0.0593 | 0.839 | 0.40154 | | | Other Race Alone | 0.0722 | 0.0927 | 0.778 | 0.43657 | | | American Indian and Alaska Native | -0.0093 | 0.0132 | -0.707 | 0.47968 | | | Poverty Status Under .50 | 0.00954 | 0.0194 | 0.493 | 0.622227 | | | White Alone | -0.0628 | 0.132 | -0.475 | 0.634479 | | | Regular High School Dipl Educ | 0.0109 | 0.0246 | 0.445 | 0.656398 | | | Masters Degree | -0.0108 | 0.0251 | -0.431 | 0.666549 | | | Hispanic or Latino Ethnicity | -0.0215 | 0.0517 | -0.416 | 0.677185 | | | Population Male | 0.027 | 0.095 | 0.284 | 0.776147 | | | Poverty Undetermined | 0.0168 | 0.0698 | 0.241 | 0.809786 | | | GED or Alternative Dipl Educ | 0.00191 | 0.0134 | 0.142 | 0.886919 | | | Poverty Status 1.50-1.84 | -0.000831 | 0.0172 | -0.048 | 0.961529 | | Table 5: All crime diversity linear model. | Coef. | Min. | 1st Q. | Median | 3rd Q. | Max. | Global | |------------------------------------|--------|---------|-----------|--------|-------|---------| | Population | -1.27 | 0.261 | 0.459 | 0.683 | 1.75 | 0.4598 | | Median Household Income | -3.8 | -0.466 | -0.116 | 0.203 | 4.42 | -0.2803 | | GSV Image Index | -0.528 | -0.0226 | 0.135 | 0.318 | 1.34 | 0.1722 | | Population Female | -14.6 | -0.819 | 0.537 | 1.83 | 20.5 | -0.1607 | | Household Heterogeneity | -3.48 | -0.219 | 0.0407 | 0.308 | 1.97 | 0.1539 | | Median Age | -1.55 | -0.365 | -0.153 | 0.0629 | 1.48 | -0.1476 | | Census Block Land Size | -4.59 | -0.6 | 0.00436 | 0.362 | 6.84 | 0.1211 | | African American Alone | -5.82 | -0.606 | -0.106 | 0.609 | 5.18 | 0.1055 | | Other Race Alone | -10.5 | -1.06 | -0.269 | 0.665 | 11.6 | 0.0721 | | Language Heterogeneity | -1.28 | -0.124 | 0.0237 | 0.249 | 1.85 | -0.0703 | | Some College More than 1 Year Educ | -1.16 | -0.175 | 0.0619 | 0.334 | 1.92 | 0.0658 | | Professional Degree | -7.6 | -0.648 | -0.265 | 0.124 | 9.11 | 0.0656 | | White Alone | -14.9 | -1.82 | -0.694 | 0.684 | 18.5 | -0.0628 | | Bachelors Degree | -3.21 | -0.33 | 0.103 | 0.502 | 4.52 | 0.0625 | | Labor Force Unemployed | -3.24 | -0.169 | 0.00194 | 0.224 | 2.32 | -0.0607 | | No Schooling Completed Educ | -1.26 | -0.147 | 0.0382 | 0.178 | 2.34 | 0.0607 | | Poverty Status 1.00-1.24 | -0.807 | -0.204 | -0.0211 | 0.137 | 1.74 | -0.0543 | | Asian Alone | -11.3 | -0.766 | -0.104 | 0.501 | 5.49 | 0.0497 | | Poverty Status 1.25-1.49 | -3.44 | -0.196 | -0.0465 | 0.125 | 1.43 | 0.0448 | | Racial Heterogeneity | -2.91 | -0.239 | 0.0157 | 0.263 | 3.49 | -0.0409 | | Poverty Status 1.85-1.99 | -1.17 | -0.169 | -0.000403 | 0.171 | 1.28 | 0.0335 | | Vacant Housing Units | -2 | -0.0537 | 0.113 | 0.268 | 1.07 | 0.0289 | | Per Capita Income | -7.13 | -0.577 | 0.107 | 0.551 | 5.11 | 0.0277 | | Population Male | -13 | -0.582 | 0.892 | 2.41 | 22.2 | 0.027 | | Less than 1 Year College Educ | -3.66 | -0.272 | -0.068 | 0.19 | 1.83 | 0.0263 | | Poverty Status .5099 | -2.05 | -0.358 | -0.121 | 0.117 | 2.01 | 0.026 | | Associates Degree | -1.54 | -0.211 | -0.0216 | 0.13 | 1.63 | -0.0256 | | Hispanic or Latino Ethnicity | -16.1 | -1.04 | -0.0233 | 0.956 | 6.58 | -0.0215 | | Poverty Undetermined | -21 | -2.89 | -0.273 | 1.35 | 31.6 | 0.0168 | | Native Hawaiian Pacific Islander | -3.9 | -0.0667 | 0.0583 | 0.183 | 2.72 | 0.014 | | Regular High School Dipl Educ | -1.95 | -0.441 | -0.132 | 0.16 | 1.68 | 0.0109 | | Masters Degree | -1.83 | -0.228 | 0.121 | 0.524 | 3.98 | -0.0108 | | Poverty Status Under .50 | -3.2 | -0.377 | -0.0656 | 0.207 | 1.33 | 0.0095 | | American Indian and Alaska Native | -0.872 | -0.171 | 0.00325 | 0.102 | 1.32 | -0.0093 | | GED or Alternative Dipl Educ | -1.33 | -0.232 | -0.0679 | 0.0693 | 0.811 | 0.0019 | | Poverty Status 1.50-1.84 | -2.85 | -0.231 | -0.042 | 0.176 | 1.36 | -8e-04 | Table 6: All crime diversity gwr model. | Coef. | Est. | Std. Err. | t val | p val | Sig. | |------------------------------------|-----------|-----------|--------|----------|------| | Population | 0.483 | 0.0149 | 32.317 | <2e-16 | *** | | Household Heterogeneity | 0.22 | 0.0196 | 11.274 | < 2e-16 | *** | | Median Household Income | -0.18 | 0.0251 | -7.155 | 9.75E-13 | *** | | Median Age | -0.16 | 0.0193 | -8.292 | < 2e-16 | *** | | GSV Image Index | 0.151 | 0.0125 | 12.07 | < 2e-16 | *** | | Census Block Land Size | 0.138 | 0.0156 | 8.849 | < 2e-16 | *** | | Language Heterogeneity | -0.0914 | 0.0175 | -5.23 | 1.77E-07 | *** | | Some College More than 1 Year Educ | 0.0911 | 0.0218 | 4.175 | 3.04E-05 | *** | | Labor Force Unemployed | -0.0814 | 0.0207 | -3.935 | 8.44E-05 | *** | | Bachelors Degree Educ | 0.119 | 0.035 | 3.396 | 0.000689 | *** | | Poverty 1.25-1.49 | 0.05 | 0.0172 | 2.911 | 0.003617 | ** | | Poverty Status 1.00-1.24 | -0.047 | 0.0173 | -2.714 | 0.006681 | ** | | Poverty Undetermined | -0.174 | 0.0733 | -2.38 | 0.017359 | * | | Associates Degree Educ | -0.036 | 0.0169 | -2.133 | 0.03301 | * | | Population Male | 0.207 | 0.0997 | 2.075 | 0.038008 | * | | Vacant Housing Units | 0.0297 | 0.0152 | 1.959 | 0.050137 | • | | Less than 1 Year College Educ | 0.0308 | 0.016 | 1.921 | 0.054837 | • | | Poverty Status 1.50-1.84 | 0.0334 | 0.0181 | 1.847 | 0.064885 | | | Hispanic or Latino Ethnicity | -0.0996 | 0.0547 | -1.822 | 0.068574 | | | Poverty Status Below .50 | 0.0308 | 0.0204 | 1.507 | 0.131928 | | | American Indian and Alaska Native | -0.0203 | 0.0139 | -1.469 | 0.14196 | | | Poverty Status .5099 | 0.0277 | 0.0227 | 1.218 | 0.223419 | | | White Alone | -0.14 | 0.138 | -1.015 | 0.310371 | | | No Schooling Completed Educ | 0.016 | 0.0162 | 0.986 | 0.324113 | | | Regular High School Dipl Educ | 0.0254 | 0.0257 | 0.986 | 0.324161 | | | Poverty Status 1.84-1.99 | 0.0123 | 0.0134 | 0.917 | 0.359075 | | | Asian Alone | -0.0551 | 0.0622 | -0.885 | 0.376289 | | | African American Alone | 0.0299 | 0.0455 | 0.658 | 0.510768 | | | Per Capita Income | -0.0144 | 0.026 | -0.555 | 0.579175 | | | Professional Degree Educ | 0.0121 | 0.0243 | 0.498 | 0.61835 | | | Native Hawaiian Pacific Islander | 0.00421 | 0.0124 | 0.338 | 0.735292 | | | GED or Alternative Dipl Educ | -0.00405 | 0.0141 | -0.287 | 0.773912 | | | Racial Heterogeneity | -0.00504 | 0.0231 | -0.219 | 0.826974 | | | Population Female | 0.0101 | 0.106 | 0.095 | 0.924518 | | | Masters Degree | -0.000641 | 0.0264 | -0.024 | 0.980595 | | | Other Race Alone | -0.000348 | 0.0974 | -0.004 | 0.99715 | | Table 7: Property crime diversity linear model. | Coef. | Min. | 1st Q. | Median | 3rd Q. | Max. | Global | |------------------------------------|---------|----------|-----------|---------|--------|---------| | Population | -0.8981 | 0.306 | 0.4781 | 0.6474 | 1.417 | 0.4827 | | Household Heterogeneity | -2.656 | -0.3255 | 0.04398 | 0.2932 | 1.734 | 0.2204 | | Population Male | -15.53 | -0.8446 | 0.3235 | 1.724 | 22.93 | 0.207 | | Median Household Income | -4.715 | -0.4662 | -0.02169 | 0.4019 | 2.489 | -0.1798 | | Poverty Undetermined | -18.8 | -2.142 | -0.5072 | 1.073 | 30.58 | -0.1744 | | Median Age | -1.411 | -0.3472 | -0.1669 | 0.08906 | 2.364 | -0.1596 | | GSV Image Index | -0.8308 | -0.07034 | 0.1135 | 0.3496 | 1.163 | 0.1508 | | White Alone | -25.15 | -1.616 | -0.2665 | 1.135 | 29.25 | -0.1402 | | Census Block Land Size | -5.486 | -0.4833 | 0.03034 | 0.6415 | 7.746 | 0.1383 | | Bachelors Degree | -3.011 | -0.2361 | 0.4447 | 0.9402 | 6.624 | 0.119 | | Hispanic or Latino Ethnicity | -17.01 | -0.9097 | 0.1713 | 1.275 | 5.129 | -0.0996 | | Language
Heterogeneity | -1.976 | -0.1775 | 0.0289 | 0.254 | 1.741 | -0.0914 | | Some College More than 1 Year Educ | -1.349 | -0.144 | 0.1217 | 0.3838 | 2.701 | 0.0911 | | Labor Force Unemployed | -2.265 | -0.06334 | 0.08595 | 0.2844 | 2.292 | -0.0814 | | Asian Alone | -13.74 | -0.8331 | -0.1624 | 0.4474 | 10.26 | -0.0551 | | Poverty Status 1.25-1.49 | -1.165 | -0.1774 | 0.07297 | 0.2876 | 1.631 | 0.05 | | Poverty Status 1.00-1.24 | -0.5411 | -0.1469 | -0.005384 | 0.1621 | 1.928 | -0.047 | | Associates Degree | -2.387 | -0.2 | 0.0129 | 0.2103 | 1.112 | -0.036 | | Poverty Status 1.50-1.84 | -1.038 | -0.2433 | 0.001527 | 0.2132 | 1.366 | 0.0334 | | Poverty Status Under .50 | -1.283 | -0.3027 | 0.03996 | 0.3228 | 2.07 | 0.0308 | | Less than 1 Year College Educ | -1.171 | -0.3033 | -0.05743 | 0.2322 | 1.205 | 0.0308 | | African American Alone | -7.23 | -0.6503 | -0.08319 | 0.4918 | 8.14 | 0.0299 | | Vacant Housing Units | -2.411 | -0.07539 | 0.09061 | 0.2691 | 1.837 | 0.0297 | | Poverty Status .5099 | -1.703 | -0.3745 | -0.1075 | 0.1199 | 1.768 | 0.0277 | | Regular High School Dipl Educ | -2.444 | -0.3602 | 0.05613 | 0.2851 | 1.295 | 0.0254 | | American Indian and Alaska Native | -1.459 | -0.276 | -0.002181 | 0.1569 | 1.181 | -0.0203 | | No Schooling Completed Educ | -1.288 | -0.2331 | -0.06057 | 0.1252 | 1.274 | 0.0159 | | Per Capita Income | -7.231 | -0.7712 | 0.01281 | 0.7158 | 8.072 | -0.0144 | | Poverty Status 1.85-1.99 | -0.921 | -0.1967 | -0.04175 | 0.1503 | 1.303 | 0.0123 | | Professional Degree | -8.18 | -0.6628 | -0.1126 | 0.3612 | 13.49 | 0.0121 | | Population Female | -21.01 | -1.165 | 0.2229 | 1.512 | 22.73 | 0.0101 | | Racial Heterogeneity | -3.464 | -0.262 | -0.02348 | 0.278 | 1.912 | -0.005 | | Native Hawaiian Pacific Islander | -2.201 | -0.08311 | 0.04267 | 0.1774 | 2.577 | 0.0042 | | GED or Alternative Dipl Educ | -1.214 | -0.2189 | -0.04321 | 0.1215 | 0.7168 | -0.004 | | Masters Degree | -2.51 | -0.2339 | 0.1232 | 0.542 | 4.04 | -6e-04 | | Other Race Alone | -16.68 | -1.087 | -0.03781 | 0.8486 | 18.28 | -3e-04 | Table 8: Property crime diversity gwr model. | Coef. | Est. | Std. Err. | t val | p val | Sig. | |------------------------------------|---------|-----------|--------|----------|------| | Population | 0.382 | 0.0176 | 21.777 | <2e-16 | *** | | GSV Image Index | 0.128 | 0.014 | 9.133 | < 2e-16 | *** | | Median Age | -0.181 | 0.0217 | -8.346 | < 2e-16 | *** | | Associates Degree | 0.149 | 0.0187 | 7.97 | 2.09E-15 | *** | | No Schooling Completed Educ | 0.141 | 0.018 | 7.863 | 4.87E-15 | *** | | Median Household Income | -0.168 | 0.0273 | -6.153 | 8.41E-10 | *** | | Language Heterogeneity | -0.127 | 0.0209 | -6.093 | 1.22E-09 | *** | | Labor Force Unemployed | -0.0972 | 0.0215 | -4.52 | 6.38E-06 | *** | | Regular High School Dipl Educ | 0.125 | 0.0288 | 4.334 | 1.50E-05 | *** | | Professional Degree | 0.108 | 0.027 | 4.01 | 6.20E-05 | *** | | Poverty Status 1.25-1.49 | -0.0598 | 0.0191 | -3.135 | 0.00173 | ** | | Poverty Status Under .50 | 0.0718 | 0.0231 | 3.101 | 0.00194 | ** | | Poverty Status .5099 | 0.0738 | 0.0254 | 2.903 | 0.00372 | ** | | Bachelors Degree | -0.11 | 0.0405 | -2.709 | 0.00677 | ** | | Census Block Land Size | 0.0395 | 0.0171 | 2.304 | 0.02128 | * | | Population Male | -0.243 | 0.114 | -2.131 | 0.03313 | * | | Vacant Housing Units | 0.0362 | 0.0171 | 2.121 | 0.03401 | * | | Native Hawaiian Pacific Islander | 0.0288 | 0.0141 | 2.049 | 0.04056 | * | | Asian Alone | 0.12 | 0.0595 | 2.017 | 0.04378 | * | | Hispanic or Latino Ethnicity | -0.12 | 0.0622 | -1.934 | 0.05323 | | | Racial Heterogeneity | 0.0454 | 0.0247 | 1.84 | 0.06581 | | | Poverty Status 1.85-1.99 | 0.0252 | 0.0148 | 1.706 | 0.08812 | | | African American Alone | 0.0926 | 0.0546 | 1.696 | 0.08995 | | | Population Female | -0.183 | 0.117 | -1.56 | 0.11877 | | | Other Race Alone | 0.178 | 0.114 | 1.556 | 0.11979 | | | GED or Alternative Dipl Educ | 0.0227 | 0.0155 | 1.461 | 0.1441 | | | Poverty Status 1.50-1.84 | -0.0294 | 0.0212 | -1.39 | 0.1645 | | | Less than 1 Year College Educ | 0.0239 | 0.0176 | 1.358 | 0.17442 | | | Per Capita Income | -0.0307 | 0.0272 | -1.13 | 0.25867 | | | Household Heterogeneity | 0.0264 | 0.0235 | 1.12 | 0.26277 | | | Poverty Undetermined | 0.1 | 0.0896 | 1.12 | 0.26294 | | | American Indian and Alaska Native | 0.012 | 0.0151 | 0.793 | 0.42805 | | | Masters Degree | 0.0215 | 0.0291 | 0.74 | 0.45953 | | | Some College More than 1 Year Educ | -0.0171 | 0.0243 | -0.704 | 0.48174 | | | Poverty Status 1.00-1.24 | 0.012 | 0.0193 | 0.622 | 0.53401 | | | White Alone | 0.0356 | 0.154 | 0.231 | 0.81706 | | Table 9: Violent crime diversity linear model | Coef. | Min. | 1st Q. | Median | 3rd Q. | Max. | Global | |------------------------------------|---------|---------|-----------|---------|--------|---------| | Population | -0.8091 | 0.2571 | 0.4417 | 0.6182 | 1.788 | 0.3821 | | Population Male | -7.129 | -0.9223 | 0.5318 | 2.864 | 36.73 | -0.2427 | | Population Female | -9.438 | -0.3429 | 0.9869 | 2.73 | 32.64 | -0.1832 | | Median Age | -2.606 | -0.3392 | -0.09489 | 0.1008 | 1.329 | -0.1809 | | Other Race Alone | -10.04 | -1.642 | -0.3149 | 0.6741 | 5.611 | 0.1775 | | Median Household Income | -2.747 | -0.2951 | 0.0562 | 0.3646 | 1.698 | -0.168 | | Associates Degree | -1.302 | -0.1176 | 0.09898 | 0.2807 | 1.899 | 0.1492 | | No Schooling Completed Educ | -1.296 | -0.1262 | 0.04969 | 0.1968 | 1.009 | 0.1413 | | GSV Image Index | -0.7754 | -0.1017 | 0.1176 | 0.2831 | 1.01 | 0.128 | | Language Heterogeneity | -0.7788 | -0.0989 | 0.09304 | 0.3035 | 1.581 | -0.1271 | | Regular High School Dipl Educ | -3.115 | -0.4047 | -0.08068 | 0.1947 | 3.198 | 0.1248 | | Hispanic or Latino Ethnicity | -23.72 | -1.225 | -0.371 | 0.3133 | 15.77 | -0.1203 | | Asian Alone | -11.09 | -1.007 | -0.2899 | 0.3934 | 2.792 | 0.1201 | | Bachelors Degree | -4.288 | -1.178 | -0.5341 | -0.0103 | 4.737 | -0.1097 | | Professional Degree | -6.926 | -0.3441 | 0.05258 | 0.6845 | 7.049 | 0.1082 | | Poverty Undetermined | -27.58 | -2.338 | -0.2021 | 1.039 | 10.96 | 0.1004 | | Labor Force Unemployed | -1.215 | -0.1892 | 0.004301 | 0.2666 | 1.585 | -0.0972 | | African American Alone | -8.643 | -0.9648 | -0.3758 | 0.2837 | 5.287 | 0.0926 | | Poverty Status .5099 | -2.97 | -0.2092 | 0.05316 | 0.3516 | 1.724 | 0.0738 | | Poverty Status Under .50 | -1.802 | -0.2409 | 0.02635 | 0.3519 | 2.868 | 0.0718 | | Poverty Status 1.25-1.49 | -0.9304 | -0.3035 | -0.1065 | 0.1846 | 1.318 | -0.0598 | | Racial Heterogeneity | -2.635 | -0.2552 | -0.02935 | 0.3326 | 1.766 | 0.0454 | | Census Block Land Size | -7.515 | -0.6778 | 0.05457 | 0.6541 | 6.558 | 0.0395 | | Vacant Housing Units | -3.324 | -0.1142 | 0.0657 | 0.2608 | 1.537 | 0.0362 | | White Alone | -15.37 | -2.224 | -0.5699 | 0.5618 | 7.33 | 0.0356 | | Per Capita Income | -5.104 | -0.5847 | 0.01716 | 0.3028 | 6.77 | -0.0307 | | Poverty Status 1.50-1.84 | -2.054 | -0.239 | -0.006698 | 0.2159 | 2.082 | -0.0294 | | Native Hawaiian Pacific Islander | -2.299 | -0.1504 | -0.001367 | 0.1182 | 1.564 | 0.0288 | | Household Heterogeneity | -1.311 | -0.2777 | -0.02028 | 0.3642 | 3.38 | 0.0264 | | Poverty Status 1.85-1.99 | -1.047 | -0.1854 | -0.03362 | 0.08083 | 1.906 | 0.0252 | | Less than 1 Year College Educ | -2.231 | -0.4402 | -0.2426 | 0.07021 | 0.862 | 0.0239 | | GED or Alternative Dipl Educ | -1.306 | -0.1819 | 0.05808 | 0.184 | 2.159 | 0.0227 | | Masters Degree | -3.225 | -0.5078 | -0.08279 | 0.2885 | 5.156 | 0.0215 | | Some College More than 1 Year Educ | -2.942 | -0.2876 | 0.03525 | 0.3583 | 1.999 | -0.0171 | | Poverty Status 1.00-1.24 | -1.142 | -0.2394 | -0.009009 | 0.1521 | 2.042 | 0.012 | | American Indian and Alaska Native | -1.624 | -0.2269 | -0.06771 | 0.03893 | 0.8692 | 0.012 | Table 10: Violent crime diversity gwr model. | response var. | best predictor | coef | stand. err. | google div. coef | stand. err. | |--|----------------|------|-------------------------|----------------------------|-------------------------| | all crime
property crime
violent crime | | | 0.001
0.002
0.002 | 0.0094
0.0083
0.0083 | 0.001
0.001
0.001 | Table 11: Predicting crime volume instead of diversity.