
Submitted to the Annals of Applied Statistics

A COUPLED ETAS-I2GMM POINT PROCESS WITH
APPLICATIONS TO SEISMIC FAULT DETECTION

By Yicheng Cheng Murat Dundar George Mohler

Indiana University–Purdue University, Indianapolis

Abstract Epidemic-type aftershock sequence (ETAS) point pro-
cess is a common model for the occurrence of earthquake events.
The ETAS model consists of a stationary background Poisson pro-
cess modeling spontaneous earthquakes and a triggering kernel repre-
senting the space-time-magnitude distribution of aftershocks. Popu-
lar non-parametric methods for estimation of the background inten-
sity include histograms and kernel density estimators. While these
methods are able to capture local spatial heterogeneity in the inten-
sity of spontaneous events, they do not capture well patterns resulting
from fault line structure over larger spatial scales. Here we propose
a two-layer infinite Gaussian mixture model for clustering of earth-
quake events into fault-like groups over intermediate spatial scales.
We introduce a Monte-Carlo expectation-maximization (EM) algo-
rithm for joint inference of the ETAS-I2GMM model and then apply
the model to the Southern California Earthquake Catalog. We illus-
trate the advantages of the ETAS-I2GMM model in terms of both
goodness of fit of the intensity and recovery of fault line clusters in
the Community Fault Model 3.0 from earthquake occurrence data.

1. Introduction.

1.1. Background on point-process models of seismicity. The epidemic-
type aftershock sequence (ETAS) model of earthquake occurrence (Ogata,
1988, 1998) is a self-exciting point-process model where the conditional in-
tensity λ(t, x, y|Ht) of events is determined by a stationary Poisson intensity
generating spontaneous earthquake events along with a dynamic term rep-
resenting a branching process of aftershocks:

(1) λ(t, x, y|Ht) = µ(x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi,mi).

Here (x, y) is the epicenter of an earthquake event described by longitude
and latitude in decimal degrees, m is its magnitude on the Richter scale
computed using a body-wave magnitude formula (Spence, Sipkin and Choy,
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1989), Ht = {(ti, xi, yi,mi) : ti < t} is the history of all earthquake events
up to time t in a catalog, and µ(x, y) is the background intensity reflecting
spatial heterogeneity of spontaneous earthquakes and the fact that earth-
quake catalogs with aftershocks removed are approximately Poisson in time
(Gardner and Knopoff, 1974).

The space-time-magnitude distribution of parent-offspring events in the
branching process given by the function g(t, x, y,m) is called the triggering
kernel, typically following Omori’s law (Utsu, 1961):
(2)

g(t− ti, x− xi, y− yi,mi) =
K0e

a(mi−m0)

(t− ti + c)(1+ω)((x− xi)2 + (y − yi)2 + d)
(1+ρ)

where m0 is the cutoff magnitude of the dataset under study (Ogata, 1988)
and (K0, a, c, ω, d, ρ) > 0 are parameters to be estimated. Estimation of
Equation 1 typically consists of constructing a non-parametric estimate for
µ(x, y) along with finding maximum-likelihood estimators for the parameters
of the triggering kernel in Equation 2. Methods for maximizing the likelihood
include quasi-Newton (Ogata, 1988) and expectation-maximization (EM)
(Veen and Schoenberg, 2008), and the most common estimators for µ(x, y)
are spatial histograms (Marsan and Lengline, 2008; Veen and Schoenberg,
2008) or isotropic kernel density estimators (Zhuang, Ogata and Vere-Jones,
2002; Adelfio and Chiodi, 2015).

1.2. A New Model: Coupled ETAS-I2GMM. Earthquakes cluster at mul-
tiple scales, as earthquakes cluster locally through aftershock activity but
also over larger scales along fault lines (see Figure 1). While there is re-
search on the reconstruction of aftershock clusters from event data (Zhuang,
Ogata and Vere-Jones, 2002; Zaliapin et al., 2008), existing point-process
models of earthquake activity fail to capture spatial clustering patterns at
the larger scale of fault lines. In particular, histograms and kernel density
estimators are able to capture spatial heterogeneity in the risk of sponta-
neous earthquakes, but the methods capture variation over only one scale.
To our knowledge, our work here is the first to attempt to reconstruct the
community fault model (Plesch et al., 2007) with a statistical model based
on earthquake event data.

In this paper we introduce a new type of ETAS model that can capture
multiscale clustering in earthquake patterns. In particular, we propose us-
ing an infinite mixture of infinite Gaussian mixtures (I2GMM) (Yerebakan,
Rajwa and Dundar, 2014) to estimate the background rate of earthquakes
µ(x, y). For each spatial cluster, the I2GMM uses a different Dirichlet pro-
cess mixture of Gaussians (DPMG) that simultaneously predicts the num-
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ber of clusters along with performing model inference. While I2GMM has
been introduced for high-dimensional clustering and ETAS is well known in
seismology, what is new in this paper is the use of I2GMM for modeling
the intensity of a point process and the coupling of these two techniques
for multiscale modeling of space-time event patterns. Through the use of
an expectation-maximization algorithm, the benefit of our approach is that
earthquakes are assigned membership to aftershock clusters in addition to a
larger scale fault line cluster.

Another advantage of our approach is that multi-modal and skewed spatial
clusters are more accurately captured. In the case of spatial earthquake pat-
terns, each fault may be considered as a separate cluster with multi-modality
and skewness that the I2GMM can handle better than histograms and KDE
estimators. In particular, a fault is represented in the background rate of
spontaneous earthquakes by I2GMM as a cluster of several Gaussians. Un-
like kernel density estimation where each kernel corresponds to one event
in the dataset at which it is centered, each Gaussian in a spatial cluster of
I2GMM is not necessarily centered at a historical event and can generate
multiple spontaneous earthquakes in the future. One additional advantage
of the I2GMM model is that earthquakes are assigned membership to spatial
clusters inferred by the model. In this research, we explore the relevance of
spatial cluster membership to automatic detection of fault lines within the
ETAS-I2GMM framework.

1.3. Outline of the paper. In Section 2 we describe our methodology, in-
cluding an overview of the I2GMM model and details on a Monte-Carlo EM
algorithm for joint inference of the ETAS-I2GMM model. In Section 3 we
present results for several experiments where the ETAS-I2GMM is applied
to a Southern California earthquake catalog (SCEDC, 2013). We compare
the goodness of fit of the estimated intensity of the model to a baseline ap-
proach. We also use the Community Fault Model 3.0 (Plesch et al., 2007) to
explore the ability of the ETAS-I2GMM model to detect fault locations and
event-fault linkage from space-time event data.

2. Methods.

2.1. Infinite mixture of infinite Gaussian mixtures. The finite Gaussian
mixture model (GMM) uses a single Gaussian for each cluster and requires
the number of clusters to be specified. In the infinite version of GMM (IGMM)
(Ferguson, 1973), the number of components is estimated along with the com-
ponent mean vectors and covariances. Both GMM and IGMM are used for
clustering problems, albeit with limited success, as these techniques often
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Figure 1. Southern California earthquakes magnitude 2.5 and greater (black) and faults
corresponding to the Community Fault Model 3.0 (marked by lines).

overestimate the number of mixture components so as to more accurately
estimate the density of the underlying dataset. However, a more accurate
estimation of the density does not necessarily translate into a more accurate
estimation of cluster distributions, as density estimation does not readily
solve the problem of many-to-one mappings between components and clus-
ters. Two different approaches to overcome this limitation are considered in
the literature.

The first approach replaces Gaussian mixture components by Student-t
(Peel and McLachlan, 2000; Svensén and Bishop, 2005; Archambeau and Ver-
leysen, 2007; Andrews and Mcnicholas, 2012) or skewed-t (Lee and McLach-
lan, 2014) distributions and their Pearson-type extensions (Forbes andWraith,
2014; Sun, Kaban and Garibaldi, 2010) in an effort to better model cluster
distributions with heavy tails. Although closed-form solutions for maximum-
likelihood estimations of parameters do not in general exist under these set-
tings, extensions of the EM algorithm can still be derived for this family of
mixture models by placing certain restrictions on the original model. This
line of models has proved quite effective in clustering datasets with skewed
distributions but are less ideal for clusters with multi-mode distributions.

The second approach generates a large number of Gaussian components
and merges them according to various metrics in an effort to recover true
cluster distributions. The study in (Figueiredo and Jain, 2002) initializes the
model with a large number of components and uses the concept of minimum
message length to merge components. Another technique uses the Bayesian
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information criterion (BIC) to choose the initial number of components and
merges components to minimize entropy (Baudry et al., 2010). Other options
for assigning components to clusters include clustering modes of components
(Ge and Sealfon, 2012) and ridgeline analysis and Bhattacharyya dissimilar-
ity (Hennig, 2010). Compared to mixtures of Student-t or skewed-t distribu-
tions, this line of models is more flexible in terms of the type of distributions
they can model. However, the main limitation of these techniques is the in-
dependence assumption made during component estimation that makes EM
derivations possible. These techniques assume that all components are gen-
erated independently, which is not a very realistic assumption in a setting
where some clusters are known to be multi-mode, and components originat-
ing from the same cluster are more likely to share certain latent parameters
than do two random components. Another limitation of these techniques is
the computational complexity that increases with the square of the number
of Gaussian components, as the decision to merge two components requires
evaluating the metric for every possible pair of components. This puts a con-
straint on the maximum number of components that can be used to model
datasets.

When clustering datasets with skewed/multi-mode cluster distributions,
two dependent subproblems, namely density estimation and component clus-
tering, need to be addressed jointly. The two-layer non-parametric GMM
(I2GMM) model, which can grow arbitrarily large in the number of compo-
nents and clusters generated, was introduced earlier to more accurately clus-
ter datasets with multi-mode and skewed cluster distributions (Yerebakan,
Rajwa and Dundar, 2014).

In I2GMM the lower layer estimates the density of the overall dataset by
clustering individual data points to components, while the upper layer asso-
ciates components with clusters to allow for cluster recovery. In the ETAS-
I2GMM model, each upper layer cluster of I2GMM corresponds to a fault
in the background rate and events assigned to an upper-layer cluster are as-
sumed to be spontaneously triggered by that fault. We note that upper-layer
cluster membership is separate from space-time aftershock clustering gener-
ated by the triggering kernel, though aftershock clustering may be used to
link offspring events back to a fault line. The lower-layer clusters of I2GMM
serve to represent complicated geometries within a single fault (for example,
a fault that is not straight but instead bends) and represent different families
of background events within a single fault that could be viewed as sub-faults.
The generative model of I2GMM is a two-layer hierarchical Dirichlet process
mixture (DPM) model where the lower layer uses one DPM for each clus-
ter and the upper layer uses a global DPM for modeling cluster shapes and
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sizes. The dependency between the two layers is achieved by centering the
base distributions of DPMs in the lower layer on a unique parameter dis-
tributed according to the global DPM. Inference, which involves sampling
component indicator variables for individual data points and sampling clus-
ter indicator variables for components, is performed by a collapsed Gibbs
sampler, enabling optimization of two subproblems simultaneously.

We believe that I2GMM has three unique features that make it very suit-
able for the estimation of background intensity µ(x, y) in the ETAS model.

• As a two-layer non-parametric model, I2GMM allows the number of
clusters and the number of mixture components in each cluster to
grow arbitrarily large, offering great flexibility in modeling clusters with
multi-mode/skewed distributions. This is the main feature that distin-
guishes I2GMM from other model-based clustering techniques that use
one component for each cluster.
• As a Bayesian model, I2GMM has hyper-parameters that can be tuned

to recover clusters with varying shapes and different levels of rar-
ity without facing singularities during model estimation. This distin-
guishes I2GMM from purely data-driven techniques such as finite mix-
ture of Gaussians and t-distributions that rely on EM and its extensions
during model learning.
• As a hierarchical model, I2GMM can share parameters not only across

different clusters but also across different components of the same clus-
ter. In other words, I2GMM assumes that components are generated
independently only when conditioned on the unique parameter defining
their clusters of origin. This differentiates the proposed work from other
techniques that estimate a large number of Gaussian components and
merges them sequentially to recover clusters, thus violating component
dependence.

In Figure 2 we provide an illustration of the generative model for I2GMM:
tkl indicates the lth component in the kth cluster Ck; xkli indicates the ith

data point in the lth component in the kth cluster. In the generative process,
tkl is a Gaussian distribution and Ck is a Gaussian mixture defined by its
components. We will use the top-level label (i.e., Ck) to identify different
clusters of spontaneous earthquakes that can be used to predict fault mem-
bership of each event. The lower-level labels could also be used to identify
faults or sub-faults (where seismologists may want to consider refining their
labels); however, in this paper we will restrict our analysis to the top-level
labels.
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Figure 2. The hierarchy of I2GMM model illustrated on a synthetic dataset.

The generative model for I2GMM is given by

H = NIW (µ,Σ|µ0,Ψ0, κ0,m) = N(µ|µ0,Σκ−10 )W−1(Σ|Ψ0,m)

G ∼ DP (γH)

(µk,Σk) = θk ∼ G
Hk = N(µk, κ

−1
1 Σk)

Gk = DP (αHk)

µkl ∼ Gk
xkli ∼ N(µkl,Σk)

(3)

In this generative model DP (γH) is a global Dirichlet process with normal-
inverse-Wishart base distribution H and a concentration parameter γ. G
is a discrete mixing measure sampled from the global DP. Center µk and
covariance Σk of the cluster k are drawn from G. For each cluster generated
by the global DPM, a local DPM is defined with base distribution Hk and
concentration parameter α. All Hk are Gaussian distributions with centers
µk and covariances κ−11 Σk. Gk is the cluster-specific discrete mixing measure
drawn from the local DP. The components in cluster k are generated with
mean vectors µkl drawn from Gk. Data points xkli are generated from the
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Gaussian components with mean vectors µkl and covariance matrices Σk.
User-specified hyper-parameters (µ0,Ψ0, κ0, κ1, α, γ,m) are listed in Table 1
along with their descriptions.

µ0 Expected mean vector for each cluster. This is usually set to the mean of the
overall dataset.

Ψ0
Ψ0

m−d−1
is the expected covariance matrix for clusters. This is usually set to

identity.

κ0 A positive scaling constant that adjusts the separation among clusters. The
smaller the κ0, the more separated the clusters will be from each other.

κ1 A positive scaling constant that adjusts the separation among components
of a given cluster. The smaller the κ1, the more separated the components
will be from each other, and clusters will tend to emerge with multi-modal
distributions.

α The concentration parameter for the local DPMs that controls the expected
number of components and their sizes within a cluster.

γ The concentration parameters for the global DPM that controls the expected
number of clusters and their sizes.

m Degree of freedom for the inverse Wishart that controls the degree of deviation
of actual component covariances from the expected covariance. The higher the
m, the less the deviation and the more similar component shapes will be.

Table 1
Hyper-parameters for I2GMM

To perform inference with the I2GMM model using spatial event data, we
first initialize the cluster and component indicators for each event to some
arbitrary values (for example put all data in the same component of a cluster)
and then use a collapsed Gibbs sampler to infer values for indicator variables
one at a time, given all other indicator variables (Yerebakan, Rajwa and
Dundar, 2014). Conditioned on the indicator variables, the location vectors
and scale matrices are determined by maximizing the complete data log-
likelihood and have closed-form solutions. One sweep of the Gibbs sampler
will go over all events in the dataset; convergence typically requires several
hundred to thousand Gibbs sweeps.

2.2. EM inference for ETAS. The ETAS model given in Equation 1 can
be viewed as a branching process where spontaneous events occur according
to a Poisson process with intensity µ(x, y). Events (from all generations) give
birth to direct offspring events determined by the triggering kernel g(t−ti, x−
xi, y − yi,mi).

Given an initial guess for the parameters of the triggering kernel in Equa-
tion 2 and the background rate µ(x, y), the branching structure along with
the model parameters of the triggering kernel can be estimated using an EM
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algorithm (Veen and Schoenberg, 2008; Mohler et al., 2011). In the E-step of
the EM algorithm the probability pij that event i is a direct offspring of event
j is estimated, along with the probability pbi that the event was generated
by the Poisson process with rate µ(xi, yi).

(4) pij =
g(ti − tj , xi − xj , yi − yj)

λ(ti, xi, yi)
,

(5) pbi =
µ(xi, yi)

λ(ti, xi, yi)
,

Given the probabilistic estimate of the branching structure, the complete
data log-likelihood is then maximized in the M-step (using standard methods
for estimating a Pareto distribution) (Veen and Schoenberg, 2008), providing
an estimate of the model parameters.

2.3. Joint inference of the ETAS-I2GMM . We propose three variants for
inferring the joint ETAS-I2GMM model.

ETAS-I2GMM 1. In the first variant we start by clustering all events
spatially using I2GMM. We then evaluate the convex hull of each cluster
and enforce µ(x, y) to be constant in the convex hull. µ(x, y) and other
parameters are then estimated using the EM algorithm in Section 2.2 with
the rectangular cells in Section 2.4 replaced by the estimated convex hulls.

ETAS-I2GMM 2. In the next variant we perform joint inference using a
Monte-Carlo EM algorithm. In particular, at each EM iteration we perform
the following steps:

i. (I2GMM-step) Sample background events from probabilistic branching
structure pij . Rather than clustering all events using I2GMM now we cluster
the sampled background events only. Estimate µ(x, y) based on the clusters
of background events the same as in ETAS-I2GMM 1.

ii. (E-step) Estimate probabilistic branching structure and model parameters
of triggering kernel as in Section 2.2.

ETAS-I2GMM 3. In the last variant we use a weighted I2GMM algorithm
in place of the i step in variant two above. Instead of estimating µ(x, y)
based on clusters of sampled background events, we estimate µ(x, y) based
on clusters generated by weighted I2GMM on all events whose weights are

imsart-aoas ver. 2014/10/16 file: main.tex date: January 3, 2018



10 Y. CHENG

estimated by (5). In the first EM iteration, since pbi does not exist we initialize
the weight to 1.

2.4. Baseline ETAS model with histogram estimator. We use the his-
togram estimator proposed in (Veen and Schoenberg, 2008) as a baseline
model for comparison. In particular, we let the background rate µ(x, y) be a
constant:

(6) µ(x, y) = µk if (x,y) is in cell k, k ∈ 1, . . . ,K

over each rectangular cell of a regular grid. There are then K+6 parameters
θ = (µ1, . . . , µK , a, c, d, w, ρ,K0) that we need to estimate (assuming there
are K cells in the grid) and for that purpose we use the EM algorithm in
(Veen and Schoenberg, 2008).

2.5. ETAS model with variable kernel estimates. For a second compari-
son we use kernel density estimation with variable bandwidth as proposed
in (Zhuang, Ogata and Vere-Jones, 2002). Here µ(x, y) is estimated as

(7) µ(x, y) =
1

T

∑
j

pbjkdj (x− xj , y − yj)

where T is the time span of all events, pbj is the background probability de-
fined in (5), dj is the varying bandwidth calculated for each event j according
to the distance of its np nearest neighbor, and kd(x, y) denotes the Gaussian
kernel function 1

2πd exp{−x2+y2

2d2 }. For all experiments, we set the parame-
ter np = 3 as suggested by (Zhuang, 2011). The rest of the parameters are
estimated according to Section 2.2 using the same EM algorithm.

3. Experiments and Results.

3.1. Experiment 1: goodness of fit of ETAS-I2GMM applied to CA earth-
quakes 3.5 and greater since 2000. We apply our models to the California
earthquake-event data filtered by year (greater than 2000) and magnitude
(greater than 3.5). The geographic bounds range from 46.116 > latitude >
29.615 and −113.581 > longitude > −130.427. The dataset is divided into
training and testing using time point 2010-01-01 00:00:00 as cutoff. All events
before this time stamp are placed in the training dataset, while all events
after it are placed in the testing dataset. We performed experiments with the
following seven models to analyze how the performance varies by adopting
different modeling strategies:
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1. ETAS-I2GMM 1.
2. ETAS-I2GMM 2.
3. ETAS-I2GMM 3.
4. 4×4 grid baseline model.
5. 3×4 grid baseline model.
6. 3×3 grid baseline model.
7. ETAS-KDE described in Section 2.5.

Note that experiments 1 to 3 are repeated 10 times and the means of the
likelihoods are recorded. For I2GMM we run 400 Gibbs sweeps; the hyper-
parameters are set as follows: µ0 = [36.4603;−119.3265] the mean of the
dataset; Σ0 = [21.4972 0; 0 23.1351)] the diagonal matrix with diagonal
entries equal to the latitude-longitude variances of the dataset; m = 22;
κ0 = 0.1; κ1 = 0.5. The values of m, κ0, κ1 are tuned to let I2GMM generate
fewer or equivalent number of clusters as the 4× 4 grid baseline model.

We use the log-likelihood function

(8) logL =
N∑
i=1

log(λ(ti, xi, yi))−
∫ T

0

∫
S
λ(t, x, y)dxdydt

to evaluate the competing models for the background intensity. The results
are shown in Table 2.

Model logL
∑

i
log(λi)

∫
λ

ETAS-I2GMM 1 -4619 -1206 3413

ETAS-I2GMM 2 -4686 -1283 3403

ETAS-I2GMM 3 -4716 -1319 3397

4 × 4 Grid -4980 -1590 3390

3 × 4 Grid -4937 -1607 3330

3 × 3 Grid -5023 -1582 3440

ETAS-KDE -4860 -1441 3419

Table 2
Log-likelihood model comparison.

All three ETAS-I2GMM models outperform those with histogram or ker-
nel density estimators. Between the three ETAS-I2GMM variants, the best-
performing model is variant 1, where I2GMM is first estimated and the EM
algorithm is run separately to estimate the parameters of the triggering ker-
nel. It is worthwhile to note that finer clusters do not necessarily yield better
results. Even though the 4×4 grid model generates more clusters it produces
lower likelihood than the 3× 4 grid model.
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Figure 3. Fault line cluster membership using the nearest CFM 3.0 fault to each earth-
quake (ground truth).

3.2. Experiment 2: ETAS-I2GMM for event-fault linkage from space-time
event data. Next, we investigate the extent to which the ETAS-I2GMM
model can learn fault structure from space-time event data. For this pur-
pose we use the Community Fault Model 3.0 (Plesch et al., 2007), which is a
three dimensional representation (latitude, longitude, and elevation) of faults
in Southern California. The CFM is a collaborative project undertaken by
scientists of the Southern California Earthquake Center (SCEC) for studying
active faults and earthquake phenomena and to improve regional earthquake
hazard assessments. Our goal here is to assess how well ETAS-I2GMM re-
covers a 2D projection of the CFM 3.0 using only space-time-magnitude
earthquake incident data as input. In particular, we generate a fault label
for each event in the dataset by assigning fault membership as the nearest
fault in CFM 3.0 (see Figure 3).

The ETAS-I2GMM-predicted label is taken from the first layer of the
I2GMM model clusters, where offspring events are assigned to the spatial
cluster of their nearest neighbor among background events. To allow for com-
parison to the CFM 3.0, we restrict the geographic bounds of the CA earth-
quake event data to 36.958 > latitude > 31.518 and −113.719 > longitude >
−121.176, but we expand the magnitude threshold down to 2.5.

There are 145 actual fault lines in CFM 3.0, but all the models we used
in previous experiments generate at most 26 clusters. For this dataset, we
added two additional models in the experiments for fault recovery:

• An I2GMM with parameters tuned to generate approximately 145 clus-
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ters on average; this version is named as ETAS-I2GMM 145 in our
experiments.
• A 16× 15 grid model that contains 143 non-empty clusters.

Accuracy Acc10 logL
∑

i
log(λi)

∫
λ

ETAS-I2GMM 145 0.46 0.52 5495 16772 11277
ETAS-I2GMM 1 0.50 0.67 4688 16034 11346
ETAS-I2GMM 2 0.45 0.46 4466 15820 11354
ETAS-I2GMM 3 0.41 0.33 4495 15904 11409

Grid 16x15 0.45 0.47 4384 15703 11319
Grid 4x4 0.37 0.37 4247 15723 11476
Grid 3x4 0.36 0.28 4224 15694 11470
Grid 3x3 0.35 0.32 4198 15673 11475
ETAS-KDE – – 4066 15464 11398

Table 3
Clustering accuracy comparison of fault classification. The log-likelihoods are also

included. We are not able to evaluate the accuracy score for ETAS-KDE since it doesn’t
generate spatial clusters.

Given that the number of clusters estimated by I2GMM may be different
from the number of faults in the CFM 3.0, we evaluate the success of fault-
cluster recovery by considering the percentage of correctly classified data
points. In addition to the overall clustering accuracy, we evaluate the mean
clustering accuracy for the 10 largest faults, which contains 67% of data
points across 145 faults. In Table 3 we present the clustering accuracy for the
seven models listed in 3.1 as well as the two additional models. To calculate
the clustering accuracy, we first align the generated clusters with the ground-
truth classes using the Hungarian algorithm (Kuhn, 1955; Stephens, 2000),
and then calculate the percentage of the data points that fall into their classes
of origin. We adopt clustering accuracy for its simplicity and its invariance
to potential misalignment between ground truth and predicted class labels.
Mean clustering accuracy is calculated as below:

(9) Acc =
1

|C∗|
∑

C∗
k
∈C∗

|C∗k ∩ Ck|
|C∗k |

where for each event, C∗k is fault cluster assignment of event k and Ck is the
predicted cluster assignment of event k. Here C∗ contains all fault clusters
under consideration; Ck is the predicted cluster corresponding to C∗k after
alignment; C∗k ∩Ck indicates data points in both C∗k and Ck; |S| denote the
cardinality of the set S. To compute the mean clustering accuracy for the ten
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Figure 4. True and predicted CFM fault groupings. Events with same labels are shown
by the same color.
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largest faults Acc10 we set C∗ to contain the ten largest true fault clusters
in the above equation.

Here again we see that ETAS-I2GMM 1 performs best both in terms of
clustering accuracy and Acc10. All the ETAS-I2GMM models outperform
ETAS with a histogram estimator or a kernel density estimator in terms
of likelihood, which is consistent with the results we have in Experiment
1 on the CA earthquake data. In Figure 4 we plot the clusters recovered
corresponding to ETAS-I2GMM 145, ETAS-I2GMM 1, 16 × 15 grid, 4 × 4
grid, and the true clusters for a better understanding of this outcome. Despite
the fact that I2GMM generated only 26 unique clusters on average compared
to 145 actual fault lines in CFM 3.0, a meaningful clustering accuracy of 0.5
was achieved. Results suggest that a majority of events in fault clusters that
tend to have elongated, skewed, and in some cases multi-mode shapes are
clustered correctly by I2GMM. In contrast, the clusters in the two histogram
models have abrupt boundaries formed from the grid irrespective of the shape
of the underlying faults, as shown in Figure 4. Moreover, when we adjust the
parameters of the I2GMM to get approximately the same number of clusters
as the true number of fault clusters, we observe that the clustering accuracy
does not improve owing to erroneous splitting of events belonging to larger
fault lines into multiple clusters. This is also true for the 16× 15 grid model
that generates 143 non-empty clusters. Although the clustering accuracy
improves with this model compared to the grid model with a smaller number
of clusters, overall clustering accuracy achieved by this model is still less than
that achieved by I2GMM with 26 clusters (0.45 vs 0.50). The difference in
clustering accuracy between the two models increases in favor of I2GMM
when we take into account only the largest ten fault clusters (0.47 vs 0.67).
This is a natural result of the grid model’s arbitrarily splitting fault clusters,
compared to the more effective handling of elongated fault cluster shapes by
I2GMM.

We illustrate this over-splitting problem in Figure 5 by plotting the clus-
tering results of the ten largest faults. From the Acc10 results in Table 3 and
Figure 5 we can see that ETAS-I2GMM 1 did the best by achieving a mean
clustering accuracy of 0.67 across ten faults while recovering several of them
by a clustering accuracy of over 0.9. On the other hand, for the grid models
the Acc10 values are consistent with their corresponding overall accuracies.

4. Discussion. We introduced a coupled ETAS-I2GMMmodel for jointly
estimating multi-scale clustering in earthquake data with parameters govern-
ing earthquake productivity and self-excitation. We also introduced what we
believe is a novel machine-learning task for statistical seismology, namely
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Figure 5. Ten largest CFM faults and recovered clusters. Events with same labels are
shown by the same color.
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estimating CFM fault clusters using unlabeled space-time-magnitude event
data. Improving upon algorithms aimed at solving this task could aid in
the development of future versions of CFM, as well as fault models in other
regions of the world.

The I2GMM model may have applications to point processes beyond those
arising in seismology. Space-time self-exciting point processes arise in the
study of crime (Mohler et al., 2011; Mohler, 2014; Mohler et al., 2015), con-
flict (Lewis and Mohler), and terrorism (Porter and White, 2012; Mohler,
2013; White, Porter and Mazerolle, 2013; White and Porter, 2014), as well
as in social-network event dynamics, for example in social media (Lai et al.,
2014; Simma and Jordan, 2012; Zhao et al., 2015). In the case of crime, clus-
ters arise naturally from the superposition of events committed by different
offenders with different modi operandi. Similar clusters may arise from the
operations of different terrorist groups within a geographic region. I2GMM
is a flexible model for capturing this type of clustering in the intensity of
events of a point process.
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