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Abstract. We propose a novel framework for integrating Hawkes pro-
cesses with multi-armed bandit algorithms to solve spatio-temporal event
forecasting and detection problems when data may be undersampled or
spatially biased. In particular, we introduce an upper confidence bound
algorithm using Bayesian spatial Hawkes process estimation for balanc-
ing the tradeoff between exploiting geographic regions where data has
been collected and exploring geographic regions where data is unob-
served. We first validate our model using simulated data and then apply
it to the problem of disaster search and rescue using calls for service
data from hurricane Harvey in 2017. Our model outperforms state of the
art baseline spatial MAB algorithms in terms of cumulative reward and
several other ranking evaluation metrics.

Keywords: Multi-armed bandit · Upper confidence bound · Hawkes
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1 Introduction

There are a variety of scenarios where a sequential set of decisions is made,
each followed by some gain in information, that allows us to refine our future
decisions or “strategies”. Often this information may come in the form of a
reward or payoff (that may be negative). Examples of such scenarios include
online advertising [3] where spending can occur in a known, profitable channel
or in a new, possibly better channel, personalized recommendations [32] [22] of
a past product purchase or a new, possibly better product, and clinical trials [8]
between an established drug and a new treatment. In each of these cases a
balance must be struck between maximizing payoffs using known information
on treatment units and retrieving more information from those under-sampled
treatment units.

One application area where such a decision process occurs is that of search
and rescue during natural disasters. During hurricane Harvey in 2017, Houston
experienced significant flooding and a number of citizens required rescue by
boat. Information on when and where these rescues needed to occur resided
in disparate data feeds, for example some citizens were rescued by government
first responders via 911 or 311 calls, others were rescued through social media
posts by the “Cajun Navy,” a volunteer rescue group [26]. During disasters, a
particular dataset may be over sampled in one area and undersampled in another
due to power outages, cell tower outages, demographic disparities on the use of
social media, etc. For a group like the Cajun Navy who relied on under-sampled
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social media data, along with random search, machine learning based optimal
search strategies that can adapt to spatio-temporal clustering in disaster event
data would be beneficial.

We believe multi-armed bandits (MAB) are well suited for this task of bal-
ancing geographical exploration during disaster search and rescue vs. exploiting
known, biased data on locations needing help. In the classic MAB problem setup,
a gambler chooses a lever to play at each round over a planning horizon and only
the reward from the pulled lever is observed. The gambler’s goal is to maximize
the total reward while using some trials (with negative payoff) to improve under-
standing of the distribution of the under-observed levers. For the disaster search
and rescue scenario, each geographic region and window of time may be viewed
as a lever, where information may be known about areas previously visited or
having historical data, but is not known about other areas. Here the reward
is discovery of a citizen needing rescue. We note there has been past research
on mining natural disaster data. Some research has been dedicated to disaster
mitigation and management in order to minimize casualties [12]. Data mining
tasks include but are not limited to decision tree modeling for flood damage
assessment [18], statistical model ensembles for susceptible flood regions predic-
tion [27], and text mining social media for key rescue resource identification [4].
However, no work to date has tackled the problem from a MAB framework. Fur-
thermore, there are few existing spatial MAB algorithms and, to our knowledge,
no MAB algorithm has been developed for data exhibiting clustering both in
space and time.

For this purpose we introduce the Hawkes process multi-armed bandit. The
method is capable of detecting spatio-temporal clustering patterns in data, while
capturing uncertainty of estimated risk in under-sampled geographical regions.
The output of the model is a decision strategy for optimizing spatio-temporal
search and rescue decisions. The outline of the paper is as follows. In Section 2
we provide background on multi-armed bandits. In Section 3 we present our
spatio-temporal MAB problem formulation and introduce the Hawkes process
multi-armed bandit methodology. In Section 4 we conduct several experiments
on both synthetic and real data illustrating the advantages of our approach over
existing MAB baseline models.

2 Background on multi-armed bandits

Here we review existing literature on multi-armed bandits (MAB). Several cat-
egories of algorithms exist including ε-greedy, Bayes rule, and upper confidence
bound algorithms. In the case of ε-greedy algorithms, many adaptations have
been proposed. Tokic and Palm [28] follow a probability distribution to select
levers during the exploration phase, and such probability is calculated through
a softmax function, where a “temperature” parameter is introduced to adjust
how often random actions are chosen during exploration. In Tran-Thanh et al.’s
line of work [29], budgets for pulling levers are further considered. Levers are
uniformly pulled within the budget limit during the first ε rounds (i.e., explo-
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ration phase). In the rest of 1− ε rounds, Tran-Thanh et al. [29] then solve the
exploitation optimization as an unbounded knapsack problem by viewing costs,
values, and budgets as weights, estimated rewards, and knapsack capacity, re-
spectively. One of the most popular approaches in the Bayes rule family of MAB
problems is Thompson sampling [11]. It starts with a fictitious prior distribu-
tion on rewards, and the posterior gets updated as actions are played. While
in some cases sampling from the complex posterior may be intractable, Eckles
and Kaptein [9] replace the posterior distribution by a bootstrap distribution.
In [13], Gupta et al focus on scenarios with drifting rewards and tackle such a
problem by assigning larger weights to more recent rewards when updating the
posterior distribution.

Finally, upper confidence bound (UCB) algorithms [16] are one of the most
popular strategies in MAB. Essentially, a UCB algorithm builds a bounded in-
terval that captures the true reward with high possibility, and levers with higher
bounds tend to be selected. UCB algorithms are also widely studied within the
setting of contextual bandit problems where rewards or actions are characterized
by features (i.e., context). Given the observations on the features of rewards, Li
et al. [17] and Chu et al. [6], model the reward function through linear regres-
sion, and the predictive reward is further bounded by predictive variance. Such
an idea is shared by Krause and Ong [15] where the authors adopt Gaussian
process regression (GP) to bound the predicted rewards by the posterior mean
and standard deviation conditioned on the past observations. Wu et al. [31] take
a further step by encoding geolocation relations between levers into features
when rewards are collected in a domain of space. Even though GP regression
modeling takes spatial relations among levers into account in Wu et al.’s line
of work [31], the lack of consideration for non-stationary rewards or temporal
clustering patterns make it inapplicable in many real-world problems such as
those considered in this paper. To overcome such shortcomings, we develop an
upper confidence bound strategy using Bayesian Hawkes processes (HPs) in this
work. HPs have been widely studied and applied in many areas from earthquake
modeling [10] and financial contagion [2], to event spike prediction [5] and crime
prevention [19]. However, HPs have not been combined with MAB strategies
to date and we show how they can be seamlessly integrated with existing UCB
algorithms to build a spatial and temporal aware MAB algorithm.

3 Methodology

3.1 Spatio-temporal MAB problem formulation

We first partition the entire spatial domain of a city into a set of grid cells, and
we denote this set of cells as A = {a1, a2, · · · }. We divide the range of longitude
and latitude evenly into X and Y grids, i.e., X × Y cells in total. Each grid
cell is characterized by a feature vector xa. In this manuscript, we use the grid
indicators as features to describe the geolocation of a cell, i.e., xa = [x, y]ᵀ. Given
a time span T , each multi-armed bandit (MAB) algorithm recommends a short
ranked list consisting of N cells to visit, denoted as a, for every W time units. For
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each visit v at cell a ∈ a, we observe the events that occurred in the cell, denoted
as T av , and we consider the number of discovered events |T av | as rewards rav . Our
goal is to maximize total rewards, i.e., the total number of observed events in the
visited cells after a total of V visits. This type of sequential decision-making task
is a spatio-temporal multi-armed bandit problem in which each cell is viewed as
a lever, and each visit to the set of chosen grid cells (constrained by resources)
can be viewed as pulling the levers of the MAB machine.

3.2 Hawkes Process multi-armed bandits

We model the occurrence of events in space and time using a Hawkes process
where the intensity if given by,

λ(t|θ, T ) = µ+
∑
ti<t
ti∈T

αβexp−β(t−ti). (1)

Here, θ represents the parameters (µ, α, β) where µ is the background intensity; α
is the infectivity factor (when viewed as a branching process this is the expected
number of direct offspring an event triggers); and β is the exponential decay
rate capturing the time scale between generations of events. Here T is the set of
timestamps for inference.

At each round of the multi-armed bandit (MAB) process, we select N cells
with the highest estimated risk to visit, and we observe the events. However,
time will have elapsed between consecutive visits to a cell and there is a gap that
needs to be filled. Therefore, to fill up these gaps, we simulate Hawkes processes
(HPs) by thinning [1] based on the inferred parameters. A combination of actual
observations and simulated events is then defined as a set of timestamps that
represents our best guess on the missing gap for each grid cell. We denote these
sets of timestamps as Ŝ = {Ŝa|a ∈ A}. After each visit, we update each Ŝa by
choosing the most likely HP realization and defining that as the event history.

To estimate the Hawkes process parameters, we use Bayesian inference ∗ to
estimate Ŝa for each visited cell a ∈ a and to estimate the parameters of HPs
[24]. The likelihood function is given by Equation 2 , where Ŝa = {t1, t2, · · · , tn}.

L(Ŝa|µ, α, β) =

|Ŝa|∏
i=1

λ(ti)exp−
∫ tn
0

λ(u)du. (2)

If we denote the prior by p(µ, α, β), we get the posterior p(µ, α, β|Ŝa) ∝
p(µ, α, β)L(Ŝa|µ, α, β), where 0 < µ, β < ∞ and 0 < α < 1. Here, we choose a
gamma distribution (G) as a prior for µ and β, and we choose a beta distribution
(B) as a prior for α. That is, p(µ), p(β) ∼ G(kp, kc), where kp and kc are the
shape and scale parameter for G, respectively ; and p(α) ∼ B(m,n), where m
and n are both shape parameters for B.

∗ https://github.com/canerturkmen/hawkeslib
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We use Metropolis-Hastings [25] to draw samples from the posterior distri-
bution. We then denote such a set of parameters as Θ = {θ1, θ2, · · · , θL}, where
θl = (µl, αl, βl). For each θl, we simulate a HP realization and denote them as

S̃a = {S̃al |l = 1, 2, · · · , L}. Together with all S̃a where a ∈ A, we denote them

as S̃. Note that the base intensity is a function of time, i.e., µ(t), contributed by
the best guess Ŝa. Given the newly observed timestamps T av , together denoted
as T v = {T av |a ∈ a}, we then fill up the gap between the best guess Ŝa and the
observed timestamps by selecting the set of simulated timestamps, denoted as
S̃a
l̂

, where T av has the largest likelihood as in Equation 3. Finally, we update our
best guess for observed cells by Equation 4.

l̂ = argmax
l
L(T a

v |θl, {S̃a
l , Ŝa}). (3) Ŝa = {T a

v , S̃a
l̂ , Ŝ

a}. (4)

3.3 Spatial Upper Confidence Bound on Event Intensities

In this section we show how to incorporate the spatial relationships between
cells and build an upper confidence bound (UCB) on event intensities. For each

cell, we have a set of simulated timestamps S̃, and we can estimate the event
intensities up to current time tc through the intensity function in Equation 1. The
set of event intensities of each cell a are denoted as λa(tc) = {λal (tc|θl, T al )| l =

1, 2, · · · , L}, where T al = {S̃al , Ŝa} and θl = (µl, αl, βl).

Inspired by the UCB algorithm, we consider its ζhp standard deviation above
the mean as the UCB on the intensities:

sahp = λ
a
(tc) + ζhp ×σλa(tc)

, (5)

where λ
a
(tc) and σλa(tc)

are the mean and the standard deviation of estimated

intensities in S̃a ∈ S̃; ζhp is the parameter to decide how much we look at the
upper bound when selecting the cells based on the estimated intensities; and sahp
is the UCB on the intensities. Together, we define it as shp = {shp|a ∈ A}.

For λa(tc), the last visit in each cell is varied, and thus, the time span for

each simulation S̃al is different as well. To smooth out the impact from the
variations, we apply a 2D Gaussian smoothing filter (GF) across all grid cells
and incorporate the spatial relationships between cells by taking xa = [x, y]ᵀ into
account for the coefficient calculation. In particular, a 2D GF modifies the shp

by the convolution with a Gaussian function g(x, y) = 1
2πσ2

gp
exp(−x

2+y2

2σ2
gp

), where

σgp is the standard deviation of the Gaussian distribution. For simplicity, we
use the same standard deviation as in GP regression and assume both rewards
and event intensities share the similar spatial relationships among grid cells.
Such a smoothing process is defined as GF(shp|σgp), and the smoothed UCB
on intensities is then defined as shp = {sahp|a ∈ A}. In Figure 1, we present the
framework for determining a cell score sahp.
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Fig. 1: Overall framework on score shp in HpSpUCB.

3.4 Baseline Methods

We will compare the Hawkes process MAB to several baseline algorithms. We
also show in the subsequent section how to combine existing MAB strategies
with the Hawkes process MAB to further improve performance.

Epsilon Greedy ε-greedy: The epsilon-greedy algorithm [16] separates trials
into exploitation and exploration phases using a proportion of ε and 1− ε visits
respectively. We keep track of the average reward per visit for every cell after
each visit, and then we visit the cells with the highest average reward during
exploitation. During the exploration phase, we visit all the cells uniformly at
random.

Upper Confidence Bound UCB1: For upper confidence bound (UCB) algo-
rithm [16], we construct an UCB on rewards so that the true value is always
below the UCB with a high probability. We then pay visits to those promising
cells with the highest UCB. The UCB of cell a during visit v is defined as a score,

saucb, calculated as saucb = rav + ζucb
√

2log v
na
v

, where rav is the average reward per

visit and nav is the total number of visits up to visit v. The parameter ζucb is to
control how optimistic we are during the processes. Finally, after each visit, we
update the scores saucb, and we select the top-N cells with the highest score for
the next visit.

Spatial Upper Confidence Bound SpUCB: While the epsilon-greedy algo-
rithm considers the cells with the largest mean value of rewards during ex-
ploitation, and the upper confidence bound (UCB) algorithm selects the most
optimistic cells, neither considers the spatial relationship between the cells and
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the corresponding events. To introduce such geolocation information into MABs,
Wu et al. [31] propose a space-aware UCB algorithm utilizing a Gaussian Process
regression model (GP) [23] and building up a spatial UCB from the predicted
expectation and uncertainty for each lever. After each visit, we collect the fea-
tures of visited cells and their corresponding rewards, denoted as X and Y,
respectively. Together with previous collections, i.e., X = X ∪ {xa|a ∈ a} and
Y = Y∪{ra|a ∈ a}, we train the GP regression model. In the GP, we hold a prior
assumption that the correlations between two cells a and a′ slowly decay follow-
ing an exponential function of their distance. Thus, we select a radial basis ker-
nel, kRBF, as the covariance of a prior distribution over the target functions. The

kernel function kRBF is calculated as follows: kRBF(xa,xa′) = exp
(
−‖xa,xa′‖2

2σ2
gp

)
,

where σgp is a parameter that determines how far the correlation extends.
After each visit, we build the spatial UCB based on the prediction for each

cell a by looking at its ζgp predicted uncertainty above the expected mean, and
we denote such a UCB as sagp (Equation 6). Here, µ and σ are the predicted
expectations and uncertainties given cell a and ζgp governs how far we expend
our upper confidence bound. Unlike ε-greedy and UCB1 in which only cells with
the largest score are selected, the recommended cells are sampled for the next
visit without replacement based on a probability distribution. Such probability
distribution is calculated by a softmax function on sagp as in Equation 7, where
τgp can be viewed as a temperature parameter that adjusts the exploitation and
exploration ratio. We further denote such a baseline method as SpUCB.

sagp = µ(xa) + ζgpσ(xa). (6) pagp =
exp(sagp/τgp)∑

a∈A exp(sagp/τgp)
. (7)

3.5 Combining Hawkes Process Bandits with Existing Methods

Even though the upper confidence bound (UCB) built upon the Hawkes process
(HP) can track the event intensities, here we show how to improve its accuracy
during the early stages of the multi-armed bandit (MAB) process. We combine
the score from the UCB on intensities, sahp in shp, with the score from the previ-
ously introduced method, that is, saucb from UCB1 or sagp from SpUCB, respectively.
We denote the combined score as ŝa. Finally, we use a softmax function to cal-
culate the probability p̂a, and sample N cells without replacement based on the
probability for our next visit. We then denote our model as HpSpUCB.

More specifically, ŝa and p̂a are calculated as in Equation 8 and 9 where γ
governs how much we rely on intensities estimated through HPs, and we can
adjust our model based on how much the dataset itself contains a self-excitation
pattern. Note that we define ŝa and p̂a from all cells as ŝ and p̂, respectively.

ŝa = sa + γsahp. (8) p̂a =
exp(ŝa/τ)∑

a∈A exp(ŝa/τ)
. (9)

Based on the different choices of sa to combine with the HP component, we
have different variations as our proposed models for comparison:
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Algorithm 1 Algorithm of HpSpUCB

1: procedure HpSpUCB( A, γ, ζhp, ζgp, σgp, τ )

2: X ← ∅, y ← ∅, Ŝ ← ∅ , S̃ ← ∅, tc ←W , a ← select N cells at random
3: for v = 1 to V do . MAB process
4: T ← {T a

v |a ∈ a}, X ← X ∪ {xa|a ∈ a}, Y ← Y ∪ {ra|a ∈ a}
5: µ,σ ← GP(X ,Y|σgp) . model and infer for GP
6: sgp ← {sagp = µ(xa) + ζgpσ(xa)|a ∈ A}
7: shp, Ŝ, S̃ ← HpUCB(Ŝ, S̃, a, σgp, ζhp tc, A, T ) . calculate scores of HPs
8: ŝ← {ŝa = sagp + γsahp|a ∈ A}
9: p̂← apply softmax function on ŝ

10: a← sample N cells based on probability p̂
11: tc ← (v + 1)×W . update the current time tc
12: end for
13: end procedure

Algorithm 2 Calculation of sahp

1: function HpUCB(Ŝ, S̃, a, σgp, ζhp tc, A, T )

2: for all a ∈ a, Ŝa ∈ Ŝ, S̃a ∈ S̃ do
3: l̂← argmaxl L(T a

v |θl, {Ŝa, S̃a
l }), where S̃a

l ∈ S̃a

4: Ŝa ← {Ŝa,Sa
l̂
, T a

v }
5: Θ ← p(µ, α, β|Ŝa)

6: S̃a ← {S̃a
l = HP(Ŝa|θl)|θl ∈ Θ}

7: update Ŝa in Ŝ and S̃a in S̃
8: end for
9: shp ← {sahp = λ

a
(tc) + ζhp × σλa(tc)

| a ∈ A}, where

λa(tc) = {λa
l (tc|θl, T a

l )| l = 1, 2, · · · , L} and T a
l = {S̃a

l ∪ Ŝa |S̃a
l ∈ S̃a, Ŝa ∈ Ŝ}

10: shp ← GF(shp|σgp)

11: return shp, Ŝ, S̃
12: end function

1. UCB1HpSp where sa = saucb, that is, we combine sahp with scores from UCB1;
2. UCB1Hp where sa = saucb while GF is not applied on shp, that is, GF(shp|0);
3. HpSpUCB where sa = sagp, that is, we combine sahp with scores from SpUCB.

Note that in UCB1Hp, we remove the spatial smoothing so that we can com-
pare with UCB1 to show the advantage of just adding the HP component. With
HpSpUCB and UCB1HpSp, we can also compare when we choose different models to
incorporate the proposed HP component. The overall MAB process of HpSpUCB
is presented in the algorithm 1, and algorithm 2 shows how our HP component
plays its part in HpSpUCB.

4 Experiments

4.1 Datasets
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Spatial-temporal Synthetic Data DSyn: We first validate our methodology
using a simulated Hawkes process (HP) [20]. We generate a synthetic dataset
by first simulating a Poisson process for initial immigrant events, of which the
average number follows a Poisson distribution P(ηT ), and distribute them uni-
formly in space. Note that η is the rate per second and T is the total time span.
Next, we generate a Poisson process recursively for each event in each generation
by the following steps:

1. Draw a sample following a Poisson distribution P(φ) as the number of
offspring, where φ governs the average number of offspring that an event
spawns;

2. Sample the waiting time between parent and offspring following an exponen-
tial distribution E(ω);

3. Sample the spatial distance between parent and offspring event according to
a normal distribution N (σ); and

4. Accept and record the event only when it is within the domain of time and
space. We then go back step 1. and move on to the next recent event.

The simulation stops when all of a generation are outside T . We then denote
these synthetic datasets as DSyn. In Figure 2, we present a realization of the
synthetic data in DSyn and show the top-20 largest clusters generated by the
immigrants.

City of Houston 311 Service Requests DHry: We also apply the methodol-
ogy to geolocated Houston 311 calls for service during the time period of hurri-
cane Harvey in 2017. The dataset contains multiple types of requests with time
and geo-location labels for when and where the request is made †. The City of
Houston 311 Service had recorded 77, 601 various 311 requests. Among all kinds
of services, we focus on “flooding” events that contain complete timestamp, lon-
gitude and latitude information. Furthermore, we retain those events that hap-
pened between 08/23/2017 and 10/02/2017, e.g. after the hurricane had landed
in Houston and before it dissipated. In total, there are 4, 315 311 flooding events
within Houston, Texas, where the range of latitude and longitude is (29.580562,
30.112111) and (-95.800000, -95.018014), respectively. We denote this dataset as
DHry. In Figure 3, we present the flooding events and color-code the timestamps.
The color bar range starts at 00:00:00 on 08/23/2017, and we can also observe
the pattern of disaster-related events, where the events are reported mostly in
urban regions and mostly clustered in space and time.

4.2 Experimental Protocol

Given a spatial domain, we first partition the range of longitude and latitude
evenly into 10 disjoint intervals, i.e., X = 10 and Y = 10. Thus, there are
100 grid cells in total, and every event of interest can be mapped to a unique

†http://hfdapp.houstontx.gov/311/311-Public-Data-Extract-Harvey-clean.txt
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grid cell. In each visit, we select 5 cells (N = 5) to visit for a duration of 5
hours (W = 18, 000) for synthetic datasets Dsyn and 10 cells (N = 10) to visit
for a duration of 20 hours (W = 72, 000) for the 311 service request dataset
DHry. For each grid cell, we sample 50 sets of parameters from the posterior
distribution, i.e., L = 50. Since the selected cells at the beginning may result
in different decisions and performances in the whole MAB process, for every
parameter in all the models, we run MAB processes for 10 times with different
initial visited cells, and we report the average of each evaluation score. Also,
all parameters of the models are studied through an extensive grid search, and
the best performances are reported for the model comparison. For the sake of
reproducibility, all datasets and the source code are made publicly available in
an anonymized repository ‡.

4.3 Evaluation Metrics

We measure the performance of competing models by the cumulative reward,
that is, the number of the observed events captured in visited cells. To com-
pare the performances between different datasets in Dsyn, we then normalize
the total reward by the number of the total events and we denote it as reward.
At each visit, models generate a short ranked list for the next visit. Based on
the ranked lists, we can also evaluate the models through different ranking and
recommendation metrics. One popular metric to evaluate the ranking quality is
the normalized discounted cumulative gain (NDCG) [30]. We then calculate the
NDCG at N for each visit, where N is the number of visited cells. The relevance
value (i.e., gain) at cell a and visit v is then defined as the number of events,
i.e., |T av |. Finally, we take the average across all the visits and denote it as NDCG.

From the recommendation point of view, we are interested in how many cells
recommended by the models would actually contain events during our visit. We

‡https://anonymous.4open.science/r/475a5b4d-9521-4c47-8bcb-94a5b2c1cae0/
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first consider that a cell is relevant if there are one or more events during the visit.
We then evaluate such recommendation quality through the modified reciprocal
hit rank [21], denoted as mRHR for evaluation. Modified reciprocal hit rank is a
modified version of average reciprocal hit rank (ARHR), which is feasible for
ranked recommendation evaluations where there are multiples relevant items
(i.e., relevant cells). It can be calculated as follows:

mRHR =
1∣∣ g ∣∣

N∑
i=1

hi

ri
,where hi =

{
1 if ai ∈ g
0 if ai, /∈ g

, ri =

{
ri−1 if hi−1 = 1

ri−1+1 if hi−1 = 0,
(10)

where g is a list of relevant cells; ai ∈ a; h and r represent hit and rank,
respectively; and each hit is rewarded based on its position in the ranked list.

We also evaluate the models on recall, precision, F1 score [14], normalized
precision, and average normalized precision [7]. Recall, denoted as rec, measures
the power of the models to discover high-risk cells. It is the fraction of the relevant
cells that are successfully recommended. Precision, denoted as prc, measures
how precise the recommendation list is. F1 score, denoted as f1, is simply the
harmonic mean between rec and prc. Note that the maximal prc can be less
than 1 since the relevant cells can be less than N . Therefore, we also calculate
normalized precision, denoted as prc, by dividing prc by the maximal prc where
maximal prc happens when a is optimal. Finally, we compare using average

precision Aprc calculated as: Aprc = 1
|g|
∑N
k=1 prc@k where prc@k is when we

only consider the top k cells in the recommended list a.

4.4 Experimental Results

Performances on the synthetic datasets Dsyn:

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 1.0 3.0 5.0

×10−4

re
w

a
rd

ω

UCB1
SpUCB

HpSpUCB

0.25

0.3

0.35

0.4

0.45

0.5

0.985 0.990 0.995 1.000

re
w

a
rd

φ

UCB1
SpUCB

HpSpUCB

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.005 0.01 0.015 0.020

re
w

a
rd

σ

UCB1
SpUCB

HpSpUCB

Fig. 4: Performance on reward on Dsyn under different simulation scenarios with
various of ω, φ and σ. We run simulations by changing only one of the parameters
at a time and the other parameters, i.g., ω, φ and σ, are fixed at 10−4, 0.99 and
10−2, respectively.

We compare the performance of our model HpSpUCB against competitive base-
line methods, UCB1 and SpUCB, in terms of reward when applied to synthetic
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Table 1: Best Performance on DHry

Model reward NDCG mRHR rec prc f1 prc Aprc

ε-greedy 0.1766 0.2224 0.1345 0.1758 0.2152 0.1928 0.2719 0.3285
UCB1 0.1897 0.2917 0.1669 0.2032 0.2547 0.2233 0.3106 0.3943
UCB1Hp 0.2122 0.3198 0.1880 0.2286 0.2649 0.2367 0.3284 0.4460
UCB1HpSp 0.2181 0.3502 0.2016 0.2404 0.2679 0.2491 0.3413 0.4613
SpUCB 0.2473 0.3440 0.1963 0.2489 0.2956 0.2697 0.3728 0.4487
HpSpUCB 0.2546 0.3584 0.2087 0.2633 0.3074 0.2834 0.3920 0.4661

datasets Dsyn with different spatio-temporal patterns. The results of reward are
presented in Figure 4. Figure 4 demonstrates the reward under different ω, while
φ and σ while fixing the other parameters. Our HpSpUCB outperforms the other
baselines by a large margin, with the exception of when the process is approxi-
mately stationary over moderate time scales. This occurs when φ or ω are too
small or too large relative to the time scale of a visit, and in this scenario the
Hawkes process loses its advantage over stationary models.

Performances on Houston 311 Service Requests DHry: Table 1 presents
the best performance according to each evaluation metric of the models applied
the Houston 311 call datasetDHry. In general, our model HpSpUCB outperforms all
of the other baselines in every metric that we evaluate. In particular, by adding
an event intensity tracking mechanism in the decision-making, the performance
of HpSpUCB is better than SpUCB both on reward optimization and high-risk cell
recommendation. In terms of reward, the proposed HpSpUCB outperforms the
second-best model, SpUCB, by 2.95% while it also surpasses UCB1HpSp in NDCG

and mRHR by 2.34% and 3.52% from the ranking perspective. From the high-risk
cell retrieval point of view, HpSpUCB consistently outperforms SpUCB in rec,
prc, f1, and normalized precision prc by 5.79%, 3.99%, 5.08%, and 5.15%,
respectively. In terms of normalized precision, Aprc, HpSpUCB is still better than
its competitive opponent UCB1HpSp by 1.04%. These improvements in accuracy
illustrate HpSpUCB’s ability to recall events through event intensity tracking and
provide better recommendations on the high-risk cells. By combining the method
with the existing algorithm, stationary patterns of events are also taken into
consideration and the combined model strikes a good balance between the HP
component and the other UCB component.

Compared to UCB1, both UCB1Hp and UCB1HpSp contain the proposed HP com-
ponent, while for UCB1Hp, the spatial smoothing is removed. We can see from Ta-
ble 1 that UCB1HpSp consistently outperforms both UCB1Hp and UCB1 in all of the
evaluation metrics. UCB1HpSp and UCB1Hp out perform UCB1 by a large margin in
both reward-based and ranking quality based evaluation. These results suggest
that our proposed HP component is out-performing traditional stationary MAB
algorithms like UCB1 by tracking the space-time dynamic reward distribution.

In table 2, we present results for the evaluation metrics reward, NDCG, mRHR,
f1 and prc when choosing the model parameters with respect to the best reward
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Table 2: Performance on DHry Corresponding to Best reward

Model
best reward best NDCG

NDCG mRHR f1 Aprc reward mRHR f1 Aprc

ε-greedy 0.2125 0.1254 0.1790 0.2862 0.1615 0.1345 0.1928 0.3285
UCB1 0.2714 0.1581 0.2233 0.3460 0.1810 0.1669 0.2120 0.3943
UCB1Hp 0.3042 0.1697 0.2295 0.3956 0.1987 0.1880 0.2319 0.4460
UCB1HpSp 0.3349 0.1850 0.2409 0.4323 0.2061 0.2016 0.2481 0.4613
SpUCB 0.3366 0.1912 0.2697 0.4125 0.2467 0.1963 0.2675 0.4487
HpSpUCB 0.3070 0.1717 0.2475 0.3819 0.2492 0.2087 0.2834 0.4661

and NDCG respectively. When hyper-parameters are selected based on the best
reward, HpSpUCB performs better than SpUCB according to table 1. However,
SpUCB performs better than all the other models. This suggests that there may
be a trade-off between reward and other metrics. When we optimize the total
number of events, we may only focus on the spike in certain grids in terms of
the number of events, but sacrifice the ranking quality of the model.
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Fig. 5: reward through visits

In Figure 5, we present reward

throughout the visits in the MAB
process. Here, we can see that in
the early visits, models with the HP
component (e.g. HpSpUCB, UCB1Hp and
UCB1HpSp) have similar results as their
predecessors (SpUCB and UCB1). How-
ever, as we collect more information
and observe more events, the variance
is reduced in the posterior distribu-
tions for the Hawkes process model
parameters, and the intensity esti-
mates become more precise. At this
later stage in the MAB process, the
HP components in HpSpUCB, UCB1Hp and UCB1HpSp boost the performance. In
Figure 6 and Figure 7, we compare the number of flooding events and the aver-
age number of total visits for each grid cell from the best reward in our model
HpSpUCB. We can see that the number of flooding events in the cells is highly
correlated to the average number of visits at the end of the MAB process. This
suggests that after the trial of exploration, eventually, our HpSpUCB will learn
those cells that are most susceptible to flooding and focus on these in terms
of exploitation. Figure 8 is the snapshot of the flooding map in cell (4,1), that
HpSpUCB visits the most. It is located by the watershed of The Brays Bayou, a
slow-moving river which is notorious for its flooding history in Houston, Texas.
This also indicates that HpSpUCB can identify hotspot areas for further investi-
gation.

In Table 3 and Table 4, we present the parameter study of HpSpUCB on
DHry in terms of reward. We mainly focus on γ, σgp, τ , and ζgp, which have
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Table 3: Parameter Study on γ and σgp

σgp
γ 0.01 0.1 0.5 1 10

0.1 0.1441 0.1663 0.1660 0.1450 0.1502
0.5 0.2078 0.2190 0.1868 0.1909 0.1446

1 0.1940 0.1928 0.2546 0.2057 0.1513
5 0.2237 0.2087 0.2010 0.2208 0.1907

Table 4: Parameter Study of ζgp and τ

ζgp
τ 0.0001 0.001 0.01 0.1 1

0.01 0.1236 0.2170 0.1737 0.1075 0.0534
0.1 0.1225 0.2092 0.2213 0.0769 0.0554

1 0.1428 0.1874 0.2546 0.0908 0.0511
10 0.1477 0.1847 0.2417 0.0696 0.0561

a more significant influence on HpSpUCB in DHry. The best reward sits in a
window for both γ and σgp, which control the HP contribution and the spatial
correlation, respectively. This result shows that both the HP component and
traditional spatial MAB component contribute to the performance, and HpSpUCB

can adapt to the spatial correlations in the events through the Gaussian kernel
and Gaussian filter. In Table 4, the best reward is also located in a range for
τ and ζgp, which are in charge of the temperature in the softmax function for
sampling the cells and the weight of upper confidence bound (UCB) on the
average reward. These results suggest that HpSpUCB also addresses the trade-off
between exploitation and exploration.

5 Conclusion

We introduced a novel framework HpSpUCB that integrates Bayesian Hawkes
processes (HP) with a spatial multi-armed bandit (MAB) algorithm to forecast
spatio-temporal events and detect hotspots where disaster search and rescue ef-
forts may be directed. In particular, the model forecasts synthetic events between
each visit to a geographical area to infer the intensity in the gap between between
visits. An upper confidence bound on the estimated intensity is then built for dy-
namic event tracking. We then apply a Gaussian filter to incorporate the spatial
relationships between grid cells. We compared our HpSpUCB against competitive
baselines through extensive experiments. In simulated synthetic datasets with
space-time clustering, our HpSpUCB improves upon existing stationary spatial
MAB algorithms. In the case of Houston 311 service requests during hurricane
Harvey, HpSpUCB outperforms the baseline models considered in terms of a vari-
ety of metrics including total reward and ranking quality. Overall, with the HP
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component, we can enhance the performance of MAB algorithms. In the future,
more contextual information may be used to further improve point process MAB
algorithms. Furthermore, other types of point processes (log-Gaussian Cox pro-
cesses, self-avoiding processes, etc.) may be combined with multi-armed bandits
to solve other types of applications.
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1. Bacry, E., Bompaire, M., Gäıffas, S., Poulsen, S.: Tick: a python library for sta-
tistical learning, with a particular emphasis on time-dependent modelling. arXiv
preprint arXiv:1707.03003 (2017)

2. Bacry, E., Mastromatteo, I., Muzy, J.F.: Hawkes processes in finance. Market Mi-
crostructure and Liquidity 1(01), 1550005 (2015)

3. Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-armed bandits.
In: Advances in neural information processing systems. pp. 273–280 (2009)

4. Cheong, F., Cheong, C.: Social media data mining: A social network analysis of
tweets during the 2010-2011 australian floods. PACIS 11, 46–46 (2011)

5. Chiang, W.H., Yuan, B., Li, H., Wang, B., Bertozzi, A.L., Carter, J., Ray, B.,
Mohler, G.: Sos-ew : System for overdose spike early warning using drug mover s
distance-based hawkes processes. In: ECML PKDD 2019 Workshops (2019)

6. Chu, W., Li, L., Reyzin, L., Schapire, R.: Contextual bandits with linear payoff
functions. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. pp. 208–214 (2011)

7. Cormack, G.V., Lynam, T.R.: Statistical precision of information retrieval evalua-
tion. In: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval. pp. 533–540. ACM (2006)

8. Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis, G.D., Pineau, J.: Con-
textual bandits for adapting treatment in a mouse model of de novo carcinogenesis.
In: Machine Learning for Healthcare Conference. pp. 67–82 (2018)

9. Eckles, D., Kaptein, M.: Thompson sampling with the online bootstrap. arXiv
preprint arXiv:1410.4009 (2014)

10. Fox, E.W., Schoenberg, F.P., Gordon, J.S., et al.: Spatially inhomogeneous back-
ground rate estimators and uncertainty quantification for nonparametric hawkes
point process models of earthquake occurrences. The Annals of Applied Statistics
10(3), 1725–1756 (2016)

11. Gopalan, A., Mannor, S., Mansour, Y.: Thompson sampling for complex online
problems. In: International Conference on Machine Learning. pp. 100–108 (2014)

12. Goswami, S., Chakraborty, S., Ghosh, S., Chakrabarti, A., Chakraborty, B.: A
review on application of data mining techniques to combat natural disasters. Ain
Shams Engineering Journal 9(3), 365–378 (2018)

13. Gupta, N., Granmo, O.C., Agrawala, A.: Thompson sampling for dynamic multi-
armed bandits. In: 2011 10th International Conference on Machine Learning and
Applications and Workshops. vol. 1, pp. 484–489. IEEE (2011)



16 W.H. Chiang et al.

14. Hripcsak, G., Rothschild, A.S.: Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical Informatics Association 12(3),
296–298 (2005)

15. Krause, A., Ong, C.S.: Contextual gaussian process bandit optimization. In: Ad-
vances in neural information processing systems. pp. 2447–2455 (2011)

16. Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028 (2014)

17. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th international
conference on World wide web. pp. 661–670 (2010)

18. Merz, B., Kreibich, H., Lall, U.: Multi-variate flood damage assessment: a
tree-based data-mining approach. Natural Hazards and Earth System Sciences
(NHESS) 13(1), 53–64 (2013)

19. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-
exciting point process modeling of crime. Journal of the American Statistical As-
sociation 106(493), 100–108 (2011)

20. Møller, J., Rasmussen, J.G.: Perfect simulation of hawkes processes. Advances in
applied probability 37(3), 629–646 (2005)

21. Peker, S., Kocyigit, A.: mrhr: a modified reciprocal hit rank metric for ranking
evaluation of multiple preferences in top-n recommender systems. In: International
Conference on Artificial Intelligence: Methodology, Systems, and Applications. pp.
320–329. Springer (2016)

22. Qin, L., Chen, S., Zhu, X.: Contextual combinatorial bandit and its application on
diversified online recommendation. In: Proceedings of the 2014 SIAM International
Conference on Data Mining. pp. 461–469. SIAM (2014)

23. Rasmussen, C., Williams, C.: Gaussian processes for machine learning the mit press
(2006)

24. Rasmussen, J.G.: Bayesian inference for hawkes processes. Methodology and Com-
puting in Applied Probability 15(3), 623–642 (2013)

25. Roberts, G.O., Gelman, A., Gilks, W.R., et al.: Weak convergence and optimal
scaling of random walk metropolis algorithms. The annals of applied probability
7(1), 110–120 (1997)

26. Smith, W.R., Stephens, K.K., Robertson, B., Li, J., Murthy, D.: Social media in
citizen-led disaster response: Rescuer roles, coordination challenges, and untapped
potential. In: Proceedings of the... International ISCRAM Conference (2018)

27. Tehrany, M.S., Pradhan, B., Jebur, M.N.: Spatial prediction of flood susceptible
areas using rule based decision tree (dt) and a novel ensemble bivariate and mul-
tivariate statistical models in gis. Journal of Hydrology 504, 69–79 (2013)

28. Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between
epsilon-greedy and softmax. In: Annual Conference on Artificial Intelligence. pp.
335–346. Springer (2011)

29. Tran-Thanh, L., Chapman, A., de Cote, E.M., Rogers, A., Jennings, N.R.: Epsilon–
first policies for budget–limited multi-armed bandits. In: Twenty-Fourth AAAI
Conference on Artificial Intelligence (2010)

30. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.Y.: A theoretical analysis of
ndcg ranking measures. In: Proceedings of the 26th annual conference on learning
theory (COLT 2013). vol. 8, p. 6 (2013)

31. Wu, C.M., Schulz, E., Speekenbrink, M., Nelson, J.D., Meder, B.: Mapping the
unknown: The spatially correlated multi-armed bandit. bioRxiv p. 106286 (2017)

32. Zhou, L., Brunskill, E.: Latent contextual bandits and their application to person-
alized recommendations for new users. arXiv preprint arXiv:1604.06743 (2016)


	Hawkes Process Multi-armed Bandits for Disaster Search and Rescue

