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Abstract

Modeling temporal event sequences on the vertices of a
network is an important problem with widespread appli-
cations; examples include modeling influences in social
networks, preventing crimes by modeling their space-
time occurrences, and forecasting earthquakes. Existing
solutions for this problem use a parametric approach,
whose applicability is limited to event sequences fol-
lowing some well-known distributions, which is not true
for many real life event datasets. To overcome this lim-
itation, in this work, we propose a composite recurrent
neural network model for learning events occurring in
the vertices of a network over time. Our proposed model
combines two long short-term memory units to capture
base intensity and conditional intensity of an event se-
quence. We also introduce a second-order statistic loss
that penalizes higher divergence between the generated
and the target sequence’s distribution of hop count dis-
tance of consecutive events. Given a sequence of ver-
tices of a network in which an event has occurred, the
proposed model predicts the vertex where the next event
would most likely occur. Experimental results on syn-
thetic and real-world datasets validate the superiority of
our proposed model in comparison to various baseline
methods.

1 Introduction
Modeling event sequences is essential in many areas, such
as earthquake forecasting (Ogata 1998), crime prevention
(Mohler et al. 2011; Short et al. 2014), and user-behavior
study in social networks (Zhao et al. 2015; Mitchell and
Cates 2010). Earthquakes tend to occur as sequences or
clusters in close spatial and temporal proximity. Modeling
earthquake sequences helps forecast future earthquakes and
mitigate the seismic hazard. Space-time clustering event se-
quences are also observed in certain types of crime data,
such as burglary and gang violence (Short et al. 2014).
Studying these sequences may help identify crime patterns
and prevent crimes from happening. Social networking ser-
vices allow users to share content, and widely popular con-
tent can be shared by hundreds of thousands of users. Con-
tent sharing events form a sequence that spreads through so-
cial networks, as such, modeling this sequences could help
predict content popularity, and provide useful information
for content ranking and aggregation. It also helps better un-

derstanding of influence, fake-news or rumor propagation
over the social networks.

An event sequence is a series of timestamp and mark pairs
organized in time ascending order. The timestamps denote
the time when events occur; while the marks indicate the
identity of events. For instance, an event sequence could be
a series of time and user ID pairs indicating when and who
posts a photo. It may also be a sequence of time and longi-
tude/latitude coordinates indicating when and where earth-
quakes occur. In many cases, sequential events occur at the
vertices of an existing network or the events can be mapped
to one of the vertices of a constructed network. For instance,
earthquakes predominantly occur along fault lines, where
tectonic movements are active. Therefore, earthquakes can
be assigned membership to a large-scale fault-line cluster
(Cheng, Dundar, and Mohler 2018). By inserting vertices on
a fault line and then connecting nearby vertices, an earth-
quake network can be constructed. A sequence of earth-
quakes can thus be viewed as a series of events occurring
on the nodes of this network. As another example, posting
messages on an online social network (such as, Facebook or
Twitter) can be viewed as an event occurring at a node of that
network. In this work, we focus on modeling the event se-
quences in a network with an objective to predict the nodes
where the future events are likely to occur and to generate
sequences that closely resemble the real sequences.

The occurrence of an event may be spontaneous and in-
dependent of other events. On the other hand, it may also
be triggered by the previous events (self-excitation). Tra-
ditionally, event sequences are modeled by various point
processes (Odd Aalen and Gjessing 2008; Frank and King-
man 1993; Hawkes 1971). In particular, Hawkes processes
(Hawkes 1971) model the spontaneity by a based inten-
sity and the self-excitation by a time-varying conditional
intensity. However, these models rely on some predefined
parametric forms, thus limiting their capability of modeling
arbitrarily distributed event data. To remedy this problem,
EM-based nonparametric models (Lewis and Mohler 2011;
Zhou, Zha, and Song 2013) are proposed. However, these
models are still under the framework of Hawkes processes
and may suffer from model mis-specification when the un-
derlining event generation mechanism is not known a priori.

Alternatively, one could ignore the space-time coupling of
event sequence and model an event’s time and location in-



dependently. For instance, one can turn to Recurrent Neural
Net (RNN) (Rumelhart, Hinton, and Williams 1988), specif-
ically, Long Short-term Memory (LSTM) (Hochreiter and
Schmidhuber 1997; Graves 2013) to model a general point
process. Various models (Du et al. 2016; Xiao et al. 2017b;
Mei and Eisner 2016) along this line are proposed, but in
these models, the events’ locations are not considered, and
they are not necessarily occurring in a network node. One
can also emphasize the network on which the events occur,
ignoring their timestamp and consider event prediction as a
node classification task, which can be solved by using a net-
work embedding model (Zhang et al. 2018); however, such
a direction ignores the temporal dependency of successive
events, resulting in poor performance. Some existing works
on network embedding consider temporal change in network
(Zhu et al. 2016; Ma et al. 2018), but they are not appropri-
ate for our task because in our task the underlying network is
fixed, and we are merely interested in the temporal sequence
of nodes where the future events will occur.

In this work, we propose a novel method for modeling
temporal event sequence in the vertices of a network. Our
proposed model uses LSTM to minimize the cross-entropy
between the generated event probability and the one-hot en-
coding of the real event, which essentially enforces the gen-
erated sequences to have a first-order statistics similar to the
real sequence. However, a potential next event may occur
at any of the neighbors of the current event node and does
not have to be the exact neighbor in the real sequence. The
first-order statistic loss (cross-entropy loss) does not take
into account this aspect. In contrast, the second-order loss
penalizes the network distance between events rather than
their identity, thus favoring the events that are within the
correct hop distance in the network. For implementation,
we combine two LSTMs—our first LSTM takes long-term
event counts as inputs, while the second LSTM takes short-
term event marks as inputs. For instance, we may feed the
monthly event counts during the past 30 months to the first
LSTM and the latest 30 events to the second LSTM. The
first LSTM thus learns the slowly varying characteristics,
while the second LSTM learns the fast-changing character-
istics. Unlike existing works on point process (Xiao et al.
2017b), our model does not require domain-specific features
and solely relies on the event sequences.

The contributions of this paper are listed below:

1. We propose combining two LSTMs to model both the
slowly varying base intensity and the fast varying con-
ditional intensity of an event sequence on a network.

2. We introduce a new loss function using the network dis-
tance distribution of consecutive events along with an il-
lustration of its implementation, which is differentiable.

3. We compare our model with various baselines on both
synthetic and real-world datasets to show the superiority
of the proposed model for predicting the next node where
the event will occur.

The rest of the paper is organized as follows: In Section 2,
we provide some backgrounds regarding the important com-
ponents of our model. In Section 3, we discuss related works

in learning event sequence. In Section 4, we present a de-
tailed description of our method. In Section 5, we describe
the experiments and present the results. Finally, we summa-
rize our work in Section 6.

2 Background
In this section, we briefly go through the major building
components of this work and provide necessary background
information.

2.1 Hawkes Process
Hawkes processes (Hawkes 1971) are self-exciting point
processes where the occurrence of an event increases the
likelihood of the occurrence of future events. Hawkes pro-
cesses are characterized by an intensity function

λv(t) = µv(t) +
∑

{(vi,ti)|t>ti}

gv(vi, t− ti), (1)

where λv(t) is the intensity of an event v at time t. µv(t) rep-
resents the base intensity. The triggering kernels gv(vi, t−ti)
are accumulated over the historical events {vi, ti}. It is
common to assume that the base intensity is constant over
time µv(t) = µv when the triggering kernels gv(vi, t − ti)
vary significantly faster than µv(t). Furthermore, one may
assume that the kernels have some predefined functional
forms, such as the exponential function or the power-law
function. With a constant base intensity and exponential ker-
nels, Eq. 1 becomes

λv(t) = µv +
∑

{(vi,ti)|t>ti}

Wv,vie
−w(t−ti), (2)

where µv ≥ 0 is the time-independent base intensity, w is
the decay rate, and Wv,vi ≥ 0 is a measurement by which vi
initially excites v. Let G = {V,E} denote a graph, where V
andE are collections of vertices and edges. Let the subscript
v in Eq. 2 denote an event occurring on node v ∈ V . If we
assume that an event at node v is either spontaneous (deter-
mined by µv) or triggered homogeneously by its neighbors
vi, then we have Wv,vi = Av,vi , where A is the adjacency
matrix of G. We use the Hawkes process of Eq. 2 to gener-
ate synthetic sequences in experiments (Xu and Zha 2017).
In addition, one of the baselines, multidimensional Hawkes
process model (Xu and Zha 2017), is also based on this for-
mula.

2.2 Long Short-term Memory Architecture
Recurrent Neural Net (RNN) (Rumelhart, Hinton, and
Williams 1988) is a neural network model designed for mod-
eling time series data. Besides taking input at each time
step, it passes down the hidden state of the previous time
step. Thus, it is capable of exhibiting temporal dynamic be-
haviors. However, as pointed out by (Bengio, Simard, and
Frasconi 1994; Pascanu, Mikolov, and Bengio 2013), tra-
ditional RNNs suffer from vanishing (exploding) gradient
problem, preventing them from learning relationships sep-
arated by an extended period. To remedy this problem, au-
thors of (Hochreiter and Schmidhuber 1997) propose a Long



Short-term Memory (LSTM) architecture where a cell state
is introduced. Now the output and the intermediate states at
time t are collectively determined by the input, the hidden
state and the cell state at time t− 1. Such design effectively
reduces the multiplicative effect of the small gradients. In
this work, we adopt the version of LSTM implemented by
the following equations:

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ),

ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot � tanh(ct),

(3)

where σ is the sigmoid function and � is the Hadamard
product. it, ft, and ot are vectors of intermediate states;
while xt, ht, and ct are vectors of input, hidden, and cell
states, respectively. Matrices W∗, U∗, V∗, and vectors b∗
are trainable parameters.

In recent years, LSTM has become a popular choice for
modeling sequential data, along with other methods such as
dilated causal convolutions (van den Oord et al. 2016) and
Gated Recurrent Unit (GRU) (Cho et al. 2014). LSTM has
been successfully applied to solve various sequence related
learning problems, such as, speech recognition (Graves and
Jaitly 2014), language translation (Sutskever, Vinyals, and
Le 2014), handwriting synthesis (Graves 2013), and image
generation (Gregor et al. 2015).

2.3 Second-order Statistics of Sequential Events
Besides correlating in time, sequential events may also cor-
relate in types or space. For instance, aftershocks commonly
occur in the vicinity of a major earthquake. A picture posted
by a user is more likely to be liked by a friend than a stranger.
The general spatial correlation could be measured by Rip-
ley’s K-function (Ripley 1976; Dixon 2014) which is defined
as:

K(d) =λ−1E[number of extra events within

distance d of a randomly chosen event],
(4)

where λ is the event density (number per unit area). If edge
effects are ignored,K(d) can be estimated by (Dixon 2014):

K̂(d) =

∑
i,j 1(di,j < d)

Nλ
, (5)

where N is the number of events and di,j is the distance be-
tween the i’th and j’th events. 1(x) is the indicator function
with the value 1 if x is true and 0 otherwise. For network
events, di,j can be defined as the length of the shortest path
between node vi and vj where the i’th and j’th events occur.
Based on this concept, we propose using a normalized K1

estimate to describe the second-order property of a sequence
in a network. In specific, given a sequence S = {ti, vi} in a
network G = {V,E} with vi ∈ V , we define the following
K1 estimate:

K1(dm|S,G) =

∑N−1
i=1 1(di,i+1 < dm)∑d

dm=0

∑N−1
i=1 1(di,i+1 < dm)

(6)

where N is the size of the sequence and d is the diameter of
the network. dm can take discrete values from 0 to d, repre-
senting the range of all possible network distances between
any two nodes.K1(dm|S,G) is essentially an estimate of the
distribution of the distance between two consecutive events
in the network G. Assuming S′ = {t′i, v′i} is an artificial
sequence generated by some model in the same network G,
we can enforce S′ to have the same distance distribution as
S by minimizing D(K1(dm|S,G)||K1(dm|S′, G)), where
D(P ||Q) measures the distance between distribution P and
Q (such as Kullback-Leibler divergence, Jensen-Shannon
divergence and L2-norm).

3 Related Works
Event sequences have been primarily modeled by point pro-
cesses (Odd Aalen and Gjessing 2008), where predefined in-
tensity functions are used to capture the generative mech-
anisms. For instance, Hawkes processes (Hawkes 1971)
model the self/mutual-excitation effect by a time-varying
conditional intensity, which is boosted upon the arrival of
a new event (Eq. 1). Point processes have been widely ap-
plied to the areas such as seismology (Ogata 1998; Marsan
and Lengliné 2008), criminology (Mohler et al. 2011; Short
et al. 2014), social activity analysis (Farajtabar et al. 2014;
Zhao et al. 2015), and information diffusion (Du et al.
2013a; 2013b). Despite their success, parametric point pro-
cess models (such as Eq. 2) have some limitations. Most
notably, their intensities rely on explicitly defined kernel
functions. An inappropriate selection of the kernel function
may cause significant degradation of the model. To remedy
the problem, (Lewis and Mohler 2011) proposes an EM-
based nonparametric model to estimate the intensity func-
tions without prior knowledge of their form. Furthermore,
(Zhou, Zha, and Song 2013) and (Luo et al. 2015) extend
this method to the multidimensional Hawkes processes. De-
spite their enhanced flexibility, these models still rely on the
assumption that the events are generated by a Hawkes pro-
cess, and may not perform well for other point processes.

For better generalization, (Du et al. 2016; Xiao et al.
2017b) resort to RNN to model arbitrarily distributed event
data. In particular, (Xiao et al. 2017b) combines two LSTMs
that take synchronized time series as well as asynchronous
event sequences as inputs to predict both timestamps and
marks. But, in their model, the event process does not oc-
cur in the vertices of a network. Besides, their model re-
lies on domain-specific features such as ATM logs, which
are often not available. Alternatively, (Xiao et al. 2017a) re-
places RNN with Generative Adversary Net (GAN) (Good-
fellow et al. 2014; Goodfellow, Shlens, and Szegedy 2014),
specifically, Wasserstein GAN (Arjovsky, Chintala, and Bot-
tou 2017). However, their model is specialized in unmarked
temporal point processes and is not capable of predicting
event types. Another line of researches (Xu, Farajtabar, and
Zha 2016) focuses on inferring the causal network among



Key variables in this work. |V | is the number of vertices in
the graph.

symbol size description
kl 1 number of cells in an LSTM1 layer
ks 1 number of cells in an LSTM2 layer
dh 1 LSTM hidden dimension
y |V | × 1 one-hot encoding of a real event
xl kl × 1 event count vector
xs ks × 1 embedding vector of an event
u |V | × 1 predictive distribution
h dh × 1 LSTM hidden state
c dh × 1 LSTM cell state
D |V | × |V | network distance matrix
W |V | × (|V |+ dh) weight (fully-connected layer)
b |V | × 1 bias (fully-connected layer)

different types of events. Our model is different from these
models as our networks are constructed beforehand; besides,
our causal networks are significantly larger.

4 Methods
4.1 Problem Description
Given a network G = {V,E} where V and E are the col-
lections of vertices and edges, we can represent a sequence
of N events on the vertices V before time T by a series of
vertex-time pairs, S = {(vi, ti)|vi ∈ V, ti ∈ [0, T ), ti <
ti+1, i = 1, ..., N}. Furthermore, we can extract the vertices
from S to form a vertex sequence Ŝ = {vi|vi ∈ V, i =
1, ..., N}. In this work, we focus on learning a model to pre-
dict the vertex where the next event is most likely to oc-
cur based on the previous events. Formally, given a graph
G = {V,E} and a sequence Ŝ = {vi|vi ∈ V, i = 1, ..., N},
we denote

uvN+1 = P (v|Ŝ) (7)

where uvN+1 is the probability for the (N+1)’th event to oc-
cur on vertex v ∈ V , and P (v|Ŝ) is the model. We can sam-
ple the next event via v ∼ P (v|Ŝ), v ∈ V , and we call this
task event prediction. Assuming that v′N+1 is the (N + 1)’s
event predicted by the model, we can append it to the end
of Ŝ, to obtain an extended sequence Ŝ′ = [Ŝ, v′N+1]. We
then feed Ŝ′ to Eq. 7 to predict the (N + 2)’th event. By re-
peating this process, we can generate an artificial sequence
of arbitrary length on the graph, and we call this task se-
quence generation. Some key variables adopted in the fol-
lowing section are listed in Table 4.1.

4.2 Model Formulation
We propose an architecture consisting of two LSTMs, de-
noted by LSTM1 and LSTM2. Fig. 1 is an illustration of
this architecture. Both LSTMs (shaded areas in Fig. 1) are
deep (multi-layer) and contain a stack of recurrently con-
nected memory cells, each of which performs the calcula-
tions in Eq. 3. Note that the number of layers and cells in
either LSTM are adjustable and not necessarily the same
as those in Fig. 1. Summarized in Eq. 8, a cell in LSTM1
(LSTM2) takes an input xli (xsi ), a hidden state hl

i (hs
i ) and a

cell state cli (csi ), and outputs a new hidden state hl
i+1 (hs

i+1)
and a new cell state cli+1 (csi+1). As shown in Fig. 1, these

Figure 1: Network Architecture. The shaded areas represent
LSTMs; while the cyan circles represent cells. Each LSTM
contains two layers.

new states are then passed horizontally to the next cell in the
same layer and vertically to the cell in the next layer. The fi-
nal outputs of the two LSTMs are concatenated and fed to a
fully-connected layer with a Softmax activation, to generate
a predictive distribution ui+1 over the vertices (V ) for the
next event (Eq. 8).

(hl
i+1, c

l
i+1) = cellLSTM1(xli,h

l
i, c

l
i)

(hs
i+1, c

s
i+1) = cellLSTM2(xsi ,h

s
i , c

s
i )

ei = [hl
f ,h

s
f,i]

ui+1 = Softmax(Wei + b)

(8)

LSTM1 takes long-term event counts as input and learns
the slowly varying background rate (similar to µv(t) in Eq.
1). We define an event count vector xli = [xli,v], v ∈ V ,
with xli,v representing the number of events on node v dur-
ing [(i − 1)∆t, i∆t). The inputs of LSTM1 are xli, xli+1,
xli+2, ..., xl

i+kl−1, corresponding to the latest kl intervals.
Note these pre-computed vectors are not trainable. LSTM2,
on the other hand, learns the short-range correlation (resem-
bling the triggering kernels in Eq. 1). Given that the latest
ks events occur on nodes vi, vi+1, ..., vi+ks−1, the inputs
of LSTM2 are their embedding vectors xs

i , xsi+1, xsi+2, ...,
xsi+ks−1. Note these embedding vectors are learned during
training by back-propagation.

Let hl
f denote the hidden state of the last cell in the

last layer of LSTM1, and {hs
f,i,h

s
f,i+1, ...,h

s
f,i+ks−1} de-

note the hidden states in the last layer of LSTM2. Sum-
marized in the last two equations in Eq. 8, concatenating
hl
f to each element in {hs

f,i,h
s
f,i+1, ...,h

s
f,i+ks−1}, we ob-

tain a series of vectors {ei, ei+1, .., ei+ks−1}, which are
then fed to the Softmax layer to generate a series of
vectors {ui+1,ui+2, ...,ui+ks}, representing the probabil-
ity distributions over the vertices for the next events. Let
{yi+1, yi+2, ..., yi+ks

} denote the one-hot encoding of the
nodes where the real events occur. The cross-entropy loss
can thus be written as the following:



LC = − 1

ks

ks∑
k=1

|V |∑
j=1

yji+klog(uji+k), (9)

where yji+k and uji+k are the j’th elements of yi+k and ui+k,
respectively. The summation is over the number of steps ks
and the number of nodes |V | in the network.

As mentioned in Sec. 2.3, by minimizing
D(K1(dm|S,G)||K1(dm|S′, G)), we could ensure that the
generated sequence S′ has the same distance distribution as
the real sequence S. However, implementing K1 in a neural
network setting is not trivial. In particular, the right-hand
side of Eq. 6 is not differentiable. If our loss function
contains Eq. 6, we would not be able to perform gradient
descent. To overcome this problem, we smooth Eq. 6 using
Kernel Density Estimation (KDE) with a Gaussian kernel:

K1(dm|S,G) =

∑N−1
i=1 exp(−(

di,i+1−dm

h )2)∑d
dm=0

∑N−1
i=1 exp(−(

di,i+1−dm

h )2)
,

(10)
where h > 0 is the bandwidth. With a small enough h, Eq.
10 is a good approximation to Eq. 6. Most importantly, Eq.
10 is differentiable and thus can be used to construct a loss
function.

Furthermore, we can calculate di,i+1 efficiently by matrix
multiplication. We precompute a distance matrix D with en-
try Di,j representing the distance between node vi and vj .
Let di,i+1 denote the distance between the real events vi and
vi+1 and d′i,i+1 denote the distance between the generated
events v′i and v′i+1, then we have

di,i+1 = yT
i Dyi+1,

d′i,i+1 = uT
i Dui+1,

(11)

where yi and yi+1 are the one-hot encoding of the real events
at step i and i+1, and ui and ui+1 are predictive distributions
over events at step i and i+ 1.

Plugging Eq. 11 into Eq. 10, we obtain

K1(dm|S,G) =

∑N−1
i=1 exp(−(

yTi Dyi+1−dm

h )2)∑d
dm=0

∑N−1
i=1 exp(−(

yTi Dyi+1−dm

h )2)
,

(12)
for a real sequence S, and

K1(dm|S′, G) =

∑N−1
i=1 exp(−(

uT
i Dui+1−dm

h )2)∑d
dm=0

∑N−1
i=1 exp(−(

uT
i Dui+1−dm

h )2)
,

(13)
for a generated sequence S′.

Accordingly, we define the following loss function:
LK(S, S′|G) = D(K1(dm|S′, G)||K1(dm|S,G)), (14)

where D(P ||Q) could be KL-divergence, JS-divergence or
L2-norm. Overall, we propose a total loss function of the
following form:

L = LC + λLK

= − 1

ks

ks∑
k=1

|V |∑
j=1

yji+klog(uji+k)

+ λD(K1(dm|S′, G)||K1(dm|S,G)),

(15)

where λ is a hyper-parameter for regularization. ks is the
number of cells in a layer of LSTM2. The second term on
the right (regularization) is obtained by plugging Eq. 12 and
13 into Eq. 14.

Composite LSTM with Second-order Statistic Loss
Require: xli, xsi , yi, hi, ci, D, λ, number of epochs n, epoch

size m, batch size o
Ensure: model M with optimal set of parameters Θ

for epoch = 1 to n do
for batch = 1 to m do

for i = 1 to o do
Initialize hl

0 = cl0 = hs
0 = cs0 = 0

Hl
i ← LSTM1(xl

i, ..., xl
i+kl−1,h

l
0, cl0)

hl
i+1, ...,h

l
i+kl
← Hl

i

Hs
i ← LSTM2(xsi , ..., xsi+ks−1,h

s
0, cs0)

hs
i+1, ...,h

s
i+ks

← Hs
i

for j = 1 to ks do
ei+j ← Concatenate(hl

i+kl
,hs

i+j)
ui+j ← Softmax(Wei+j + b)
di+j−1,i+j ← yTi+j−1Dyi+j

d′i+j−1,i+j ← uT
i+j−1Dui+j

end for
end for
Calculate loss L using Eq. 15 and update W, b,
embedding, and the trainable parameters in Eq. 3
using gradient descent.

end for
end for

4.3 Training Protocol
In Algorithm 4.2, we show the pseudo-code of our training
procedure. A sample of input contains ks embedding vectors
xsi representing the current window of events. It also con-
tains kl event count vectors xl

i that provide the background
information of the current window. At the beginning of each
window, the hidden states and the cell states are initialized
as zero vectors, which are passed to the LSTMs along with
the inputs at various steps (intervals). The final hidden state
(hl

i+kl
) of LSTM1 is concatenated with each of the ks hid-

den state of LSTM2. The resulting vectors ei+j then go
through a fully-connected layer with Sofmax activation, to
generate the predictive distributions ui+j . Meanwhile, the
network distances between consecutive events, di+j−1,i+j

(real) and d′i+j−1,i+j (predicted) are retrieved from a pre-
computed hop-distance matrix D. At the end of a batch, the
total loss function is computed using Eq. 15 and its gradient
is evaluated and averaged over the entire batch. The gradient
descent optimizer is adopted to update the trainable parame-
ters, including the embedding, the parameters in the LSTMs
and those in the fully-connected layer.

5 Experiment
We run several experiments to validate the effectiveness of
our proposed model and to compare the performance of our



Table 1: Dataset properties. |V | and |E| are the number of
nodes and number of edges of each network, respectively.
Sequence size gives the number of events in each sequence.

dataset |V | |E| sequence size
Rand-1 291 290 10000
Rand-2 1599 1940 10000
Earthquake 648 41744 17381
Email 2634 6458 14092
Twitter 393 777 18879

model over a set of competing models. In our first exper-
iment, we perform event prediction, using the proposed
model to predict the vertices of a network in which fu-
ture events will occur. In detail, we feed event counts at
each vertex in the past 30 (kl = 30) successive intervals
{xl

i, xl
i+1, ..., xli+29} to LSTM1 and the embedding vectors

of 32 (ks = 32) historical events {xs
i , xsi+1, ..., xsi+31} to

LSTM2. Note that the selections of kl and ks are heuristic. In
general, using values too small might reduce the model’s ca-
pacity, whereas using values too large might make the train-
ing very expensive. The output ui+32 gives a probability dis-
tribution for an event to occur at each vertex at step i + 32.
To evaluate our predictions, we calculate a series of hit rates
(hit@10, hit@20, and hit@30). For instance, if the true event
vi+32 is among the top 10 most probable vertices given by
ui+32, we consider it as a hit. We slide a window of 32 events
through the entire test set and obtain the average hit rates to
indicate the prediction performance.

Our second experiment is sequence generation. Simi-
lar to what we did in event prediction, 30 (kl = 30) event
count vectors and 32 (ks = 32) embedding vectors are fed
to LSTM1 and LSTM2, to generate a predictive distribution
for the next event. However, here we sample the next event
at step i+32 from a multinomial distribution given by ui+32.
Assuming that the event that we draw is v′i+32, we then ap-
pend it to the past 31 events, resulting a new list of 32 events
{vi+1, vi+2, ..., v

′
i+32}. Here we essentially keep a queue of

32 successive events, where the oldest event leaves the queue
when a newly sampled event enters the queue. We then feed
the embedding vectors and event count vectors of the current
queue to the model to obtain the probability distribution for
the next event at step i + 33. By repeating this process, we
can generate a fake sequence of arbitrary length. To see how
realistic the generated sequences are, we compare them with
the real sequences in terms of diffusion pattern.

We also perform additional experiments for validating
model convergence, and robustness, which are presented
in the Supplement. Below, we first discuss the datasets on
which we run our experiments and the competing models
with which we compare our model.

5.1 Data Description
We use three real-world datasets, Earthquake, Email and
Twitter, and two synthetic datasets, Rand-1, and Rand-2.
Each of these is a composition of a graph and a node se-
quence on which an event occurred. For all datasets, 70%
of the sequence from its prefix is used for training and the
remaining part of the sequence is used for test. Statistics of
the dataset is provided in Table 1. More discussion of the

datasets is provided below:
Earthquake: (SCEDC 2013) contains the location, time and
magnitude of earthquakes that occurred in Southern Cali-
fornia. We construct a network based on the Community
Fault Model 3.0 (Plesch and others 2007), which is a 3D
representation (latitude, longitude, and elevation) of faults
in Southern California. Specifically, we sample every 100
points from each fault line and add an edge between two
points if their distance is less than 40 kilometers. The result-
ing network contains 648 nodes and 41744 edges (Table 1).
We collect earthquakes from 1997 to 2018 with a magnitude
of at least 2.5 and map them to the nearest location (node) in
the network. Consequently, we obtain a sequence of 17381
earthquakes that occur on the nodes of the fault network.
Email: Enron email is a publicly available dataset that con-
tains ∼ 500, 000 emails generated by employees of the En-
ron Corporation. We use email addresses owned by Enron
employees as nodes, and add an edge between two nodes if
at least one email has been exchanged between the corre-
sponding addresses. Since the resulting network is not con-
nected, we select the largest connected component that con-
tains 2634 nodes and 6458 edges as our final network (Table
1). We extract the sender address and timestamp from each
email across the entire corpse. The sender-time pairs are then
sorted in time ascending order. The resulting sequence con-
tains 14092 email sending events (sender-time pairs).
Twitter: This dataset contains Twitter data collected dur-
ing the presidential election in South Africa in 2014. We de-
fine a tweet as popular if it is retweeted more than 10 times,
and a user as popular if she has posted a popular tweet. We
use the popular users as nodes to construct a network. We
add an edge (undirected) between two nodes if one of them
has mentioned the other in a popular tweet. The resulting
network is not connected. We thus select the largest con-
nected component that has 393 nodes and 777 edges (Table
1). We consider that an event occurs on a node when the
corresponding user posts a tweet. We gather a series of such
events in time ascending order. The resulting sequence con-
tains 18879 events (user-time pairs).
Rand-1 & Rand-2: We use Erdős-Rényi model to gener-
ate random graphs G(n, p) with n nodes, where an edge
is connected randomly with probability p independent of
every other edge. First, we generate two random graphs
G(n = 2000, p = 0.0001) and G(n = 2000, p = 0.001),
then we extract the largest connected components from these
random graphs, rendering two connected graphs with (|V | =
291, |E| = 290) and (|V | = 1599, |E| = 1940), respec-
tively (Table 1). Next, we simulate two event sequences on
these two graphs using multi-dimensional Hawkes Process
(Xu and Zha 2017). Specifically, these sequences are gener-
ated with predefined base intensities µv

0 = 10−3u/|V |, u ∼
U(0, 1), v ∈ V and decay rate w = 1. We use adjacency
matrix for Wv,vi in Eq. 2. Both sequences contain N = 104

events.

5.2 Competing Methods
We compare our proposed model with the following com-
peting methods. All methods were given the identical exper-
imental setup (same data input) to maintain fairness.



Table 2: Experimental Results.

Model
Rand-1 Rand-2 Earthquake Email Twitter

Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30
LC 0.527 0.768 0.879 0.237 0.352 0.437 0.638 0.715 0.756 0.293 0.412 0.465 0.652 0.708 0.740
LC + LK 0.532 0.769 0.886 0.241 0.358 0.442 0.648 0.722 0.768 0.306 0.411 0.467 0.655 0.711 0.742
Node2Vec-dense 0.420 0.655 0.786 0.148 0.251 0.337 0.494 0.589 0.672 0.176 0.248 0.298 0.533 0.603 0.650
Node2Vec-cnn 0.449 0.724 0.872 0.165 0.307 0.410 0.452 0.585 0.649 0.162 0.233 0.282 0.507 0.555 0.605
DeepWalk-dense 0.403 0.627 0.756 0.150 0.245 0.331 0.526 0.625 0.677 0.182 0.256 0.309 0.540 0.610 0.655
DeepWalk-cnn 0.423 0.697 0.863 0.168 0.292 0.384 0.478 0.579 0.667 0.148 0.233 0.293 0.511 0.580 0.631
Random-Walk 0.013 0.016 0.066 0.005 0.015 0.016 0.300 0.364 0.370 0.003 0.009 0.013 0.143 0.159 0.175
Hawkes-Exp 0.503 0.721 0.827 0.196 0.302 0.362 0.622 0.672 0.697 0.257 0.325 0.355 0.599 0.640 0.664
RNNPP 0.348 0.717 0.826 0.208 0.308 0.375 0.376 0.493 0.554 0.249 0.359 0.406 0.587 0.649 0.692
Logistic 0.005 0.113 0.147 0.015 0.029 0.037 0.122 0.197 0.200 0.002 0.004 0.005 0.008 0.025 0.045

DeepWalk: DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
learns latent representations of nodes in a network using
truncated random walks. We apply DeepWalk to each of the
networks with the embedding dimension in {64, 128, 256},
the walk length in {20, 40, 60}, and the window size in
{5, 10, 15}. We adopt Multilayer Perceptron (MLP) (hidden
dimension {256, 128}) with Softmax activation as the clas-
sifier in our DeepWalk-dense model. The classifier takes
the embedding vectors of 32 historical events, and outputs
the probability distribution of the next event. Additionally,
we use a Convolutional Neural Network (CNN) as the clas-
sifier in our DeepWalk-cnn model. The classifier contains
two CNN layers (hidden dimension {256, 128}), and two
fully-connected layers (hidden dimension {100, |V |}). We
use a filter size of 3, a stride of 1, and a max-pooling size
of 2. We apply dropout of 0.5 in both DeepWalk-dense and
DeepWalk-cnn.
Node2Vec: Node2Vec (Grover and Leskovec 2016) uses bi-
ased random walks to learn node embeddings in a network.
We apply Node2Vec to each of the networks with the em-
bedding dimension in {64, 128, 256}, and the return param-
eter p and the in-out parameter q in {0.5, 1.0., 1.5}. Similar
to DeepWalk, we build classifiers using MLP (Node2Vec-
dense) and CNN (Node2Vec-cnn). The classifiers have the
same architecture and hyper-parameters as those of Deep-
Walk.
Random Walk: Given the current event, the next event is
predicted by performing a random walk. Precisely, let vi de-
notes the current node, the next node vi+1 is chosen uni-
formly at random from N(vi)

⋃
{vi}, where N(vi) is the

set of neighbors of vi.
Hawkes Processes (Hawkes-Exp): We fit a multi-
dimensional Hawkes process using Eq. 2 with constant
base intensity µ0 and exponential kernels. In specific, we
use a maximum likelihood estimator (MLE) with a sparse-
group-lasso regularizer (Xu and Zha 2017). We test all
combinations of hyper-parameters given decay rate w in
{0.1, 0.5, 1.0} and regularizer in {0.1, 1.0, 10.0}. For bet-
ter performance, the original sequences are cut into subse-
quences based on constant time intervals. For a fair compar-
ison, we feed the Hawkes process model with 32 historical
events, the same as the number of cells in LSTM2. There-
fore, the results of Hawkes-Exp should not be considered as
the upper limit for Rand-1 or Rand-2, despite that they were
generated using Hawkes processes.
RNN for Point Processes (RNNPP): (Xiao et al. 2017b) is
an RNN model consist of two LSTMs that combine synchro-
nized time series and asynchronous event sequences. The
model is primarily designed for maintenance support ser-

vices problem and relies on domain-specific features such
as ATM logs. Without domain-specific features, we use se-
quences of constant features (e.g. vectors of ones) instead.
Logistic Classification (Logistic): The model is a multi-
class logistic regression classifier with cross-entropy loss. It
virtually fits Softmax(Wx + b) = y and resembles the last
layer of our LSTM model (Fig. 1); x contains event counts
on each node in a given window, and y indicates the identity
of the next event.

5.3 Hyper-parameter Tuning
In the experiments, we tune the following hyper-parameters
across all the datasets: λ in {0.1, 1, 10, 100, 1000}; learning-
rate in {0.01, 0.1, 1.0, 10} with a decay rate of 0.9; em-
bedding dimension in {64, 128, 256, 512}. For the LC+LK
model, the results shown in Table 2 are obtained using the
optimal parameters (see Supplement for details). For the LC
model, the hit rates are obtained using the same parameters
as the LC+LK model without the second-order constraint.

The rest of the parameters are fixed. We use a batch-size
of 32 and a dropout of 0.5. The number of layers in each
LSTM is 2 and the numbers of cells in a layer of LSTM1 and
LSTM2 are 30 and 32, respectively. Event counts are calcu-
lated using time intervals of 0.01 seconds (Rand-1 and Rand-
2), 1 day (Email and Twitter), and 30 days (Earthquake). We
adopt KL-divergence for all the datasets to evaluate the dis-
tance between two distributions (Eq. 14).

5.4 Results
Event prediction. In Table 2, we show the comparison re-
sults of the event prediction task for ten methods over five
datasets using hit rate (@10, @20, and @30) as the evalua-
tion metric. In the table, LC is our basic LSTM model, while
LC + LK is our LSTM model with the second-order statis-
tic loss. Remaining eight are competing methods. As we can
see from the table, for all the datasets and for all different
hit rates, LC + LK is the best method (except for Email for
hit@20). Our proposed LC and LC + LK models win over
Hawkes-Exp even for the random datasets in which events
actually follow a Hawkes distribution. We can also see that
our models outperform the embedding based methods where
latent representations of the nodes are learned from the net-
work topology. Our LC+LK model’s performance is better
than that of the LC model in all cases (except for Email
for hit@20), which suggests that adding the second-order
statistic loss can improve the model for predicting the future
event.
Sequence generation. We also test if our model can learn
the correct diffusion of the real sequence. We simulate a se-



(a) Real: 100 (b) LC: 100, JS: 0.732 (c) LC+LK: 100, JS: 0.756 (d) Hawkes-Exp: 100, JS: 0.290 (e) RNNPP: 100, JS: 0.655

(f) Real: 1000 (g) LC: 1000, JS: 0.732 (h) LC+LK: 1000, JS: 0.753 (i) Hawkes-Exp: 1000, JS:
0.371

(j) RNNPP: 1000, JS: 0.428

Figure 2: Diffusion on grids. The sequences start from the center (red) of the grids. The green dots represent the nodes where
events have occurred; while the purple dots represent the grid. The top and bottom rows are snapshots taken at time step 100 and
1000, respectively. Images from left to right represent different models. JS denotes the Jaccard Similarity between a generated
sequence and a real sequence for each snapshot.

(a) Real (b) LC, corr: 0.515 (c) LC+LK, corr: 0.936

Figure 3: Earthquakes in Southern California. Blue circles represent earthquake locations; red heatmaps indicate the number of
earthquakes at each location. The correlation is between the event count distributions of the real and generated sequences.

Jaccard Similarity between a generated sequence and a real
sequence for snapshots at different steps. The scores are in
the form of mean +/- standard deviation, which are estimated
over 100 experiments.

Step LC LC+LK Hawkes-Exp RNNPP
100 0.754+/-0.108 0.747+/-0.098 0.298+/-0.030 0.656+/-0.019
500 0.661+/-0.061 0.673+/-0.058 0.282+/-0.058 0.333+/-0.018
1000 0.755+/-0.039 0.756+/-0.045 0.435+/-0.066 0.414+/-0.018

quence on a 20 × 20 grid such that the event marks (nodes)
are determined by a simple symmetric random walk and the
event timestamps are determined by a homogeneous Pois-
son process with a rate of 10. We train various models with
this sequence and generate fake sequences using them. We
illustrate the diffusion processes in Fig. 2. The snapshots
are taken at the 100’th and 1000’th time-step. The green
nodes represent the nodes that have been visited by the se-
quences, while the purple nodes represent the grid. We cal-
culate the Jaccard Similarity (JS under each image) between
a generated sequence and a real sequence for each snapshot.
A higher score indicates that the generated sequence better
mimics the real sequence. In the snapshots, LC (2nd column)
and LC+LK (3rd column) show similar patterns as the real
sequence (1st column). In contrast, the last two columns sug-
gest that Hawkes-Exp may be too conservative; while RN-
NPP may be too aggressive. In Table 5.4, we list the mean

and standard deviation of Jaccard Similarity scores over 100
experiments. The snapshots are sampled at step 100, 500,
and 1000. We can see that our LC and LC+LK models out-
perform the other two methods significantly. Notably, the
LC+LK model scores the highest mean Jaccard Similarity
in two out of the three cases. Overall, our models generate
more realistic sequences than the competing methods, and
by adding the second-order statistic constraint, the LC+LK
model better captures the characteristics of the real sequence
than the LC model.
Case study. We show the effectiveness of our model in the
earthquake forecasting task. As mentioned in the previous
section, we map earthquakes in Southern California during
1997 ∼ 2018 to a network constructed based on the fault
lines (CFM3). After training, we use both LC and LC+LK
models to generate fake sequences of the same length as
the test data. In Fig. 3, we mark the locations of earth-
quakes (blue circles) on the map of Southern California.
From left to right, the figures represent the real sequence
(test data), the fake sequences generated by the LC model
and the LC+LK model. On the same map, we indicate the
number of earthquakes at each location using a heatmap (in
red). Notably, the LC+LK heatmap captures the hot spot
at (32.5◦N, 115.5◦W ) (green square). In contrast, the LC
heatmap shows an additional hot spot at (36◦N, 118◦W )
(green circle) which is not in the real heatmap. We also es-



timate the correlation between the event count distributions
of the real and the generated sequences. The LC+LK model
renders a 0.936 Pearson correlation, while the LC model
only scores 0.515. Therefore, using second-order statistic
constraint can significantly enhance the model for generat-
ing more realistic sequences.
Model reproducibility. We make our datasets and code
available at https://github.com/daDiz/LSTM2-2ndStat.

6 Conclusions
In this work, we proposed an LSTM based model for the
task of modeling event sequences on network vertices. We
integrated structural information of the network into con-
ventional LSTM models to achieve improved performance.
Specifically, we introduced a second-order statistic loss that
measures the difference between distance distributions of
the generated sequence and the target sequence. Moreover,
we proposed an architecture that combines two LSTMs to
learn both the slowly varying base intensities and the fast
varying triggering kernels. We tested our model on synthetic
and real-world datasets and illustrated its superior perfor-
mance in forecasting future events.
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